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ABSTRACT

The object of the research reported herein was to develop a
general mathematical model and solution methodologies for
analyzing the structural response of thin, metallic shell
structures under large transient, cyclic, or static
thermomechanical loads. Among the system responses associated
with these loads and conditions are thermal buckling, creep
buckling, and ratcheting. Thus geometric and material
nonlinearities (of high order) can be anticipated and must be
considered in developing the mathematical model. The methodology
is demonstrated through different problems of extension, shear
and of planar curved beam. Moreover, importance of the inclusion
of large strains is clearly demonstrated, through the chosen
applications.
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1. INTRODUCTION

1.1 'Background

The prediction of inelastic behavior of metallic materials at elevated
temperatures has increased in importance in recent years. The operating
conditions within the hot section of a rocket motor or a modern gas turbine
engine present an extremely harsh thermo-mechanial environment. Large
thermal transients are induced each time the engine is started or shut down.
Additional thermal transients from an elevated ambient occur, whenever the
engine power level is adjusted to meet flight requirements. The structural
elements employed to construct such hot sections, as well as any engine
component located therein, must be capable of withstanding such extreme
cond{tions. Failure of a component would, due to the critical nature of
the hot section, lead to an immediate and catastEOphic loss in power and
thus cannot be tolerated. Consequently, assuring satisfactory long term
performance for such components is a major concern for the designer.

Traditionally, this requirement for long term durability has been a
more significant concern for gas turbine engines rather than rocket motors.
However, with the advent of reusable space vehicles, such as the Space
Shuttle, the requirement to accurately predict future performance following
repeated elevated temperature operations must now be extended to includ the
more extreme rocket motor application. These operating blades to severe
thermal transients that result in large inelastic strains, and several
types of behavior must be considered. The elevated temperatures can lead
to thermal buckling and, in addition, creep can be expected to occur.
Thus, a combination of thermal-creep buckling behavior leading to large
deflections can be anticipated. Because of the cyclic character of the

mechanical and thermal loads, progressive growth or ratchetting effects



must also be considered. Thus, geometric and material nonlinearities (of
high orders) can be anticipated and must be considered in the mathematical
model.,

Consequently, the industry is concerned with the behavior of thin
shell like structural elements subjected to severe time dependent
thermo-mechanical loading. Such thin elements, inecluding beams, rings,
arches, plates and shells, are presenting generic types of components,
which might be located within or adjacent to the hot section of a rocket or
a gas turbine engine.

The experience in the gas turbine engine industr& indicates, however,
that ex{sting analytic tools are not sufficiently reliable to accohplish
this task. State of the art methods for predicting hot section component
behavior are generally not sufficiently accurate to perform extended use
evaluations.

Under this kind of severe loading conditons, the structural behavior
is highly nonlinear due to the combined action of geometrical and physical
nonlinearities. On one side, finite deformation in a stressed structure
introduces nonlin?ar geometric effects. On the other side, physical
nonlinearities arise even in small strain regimes, whereby inelastic
phenomena play a particularly important role. From a theoretical
standpoint, nonlinear constitutive equations should be applied only in
connection with nonlinear transformation measures (implying both
deformation and rotations). However, in almost all of the works in this
" area, the two identified sources of nonlinearities are always separated.
This separation yields, at one end of the spectrum, problem of large
response, while at the other end, problems of viscoﬁs and/or non-isothermal

behavior in the presence of small strain.



Because of the nature of the causes, special care is needed in the
selection or development of a constitutive law that includes tme and
temperature effects. Although there exists a sizeable body of literature
on phenomenological consitutive equations for the rate—- and
temperature-dependent plastic-deformation of metallic materials, to date
rational and thermodynamically conslistent elastic-thermoviscoplastic
constitutive relations capable of incorporating the effects of large
strains and rotations have not been demonstrated.

Constitutive models for small strain in engineering literature may
generally be grouped into three categories: classical plasticity,
nonlinear viscoelasticity, and theories based on microstructural phenomena.
Each group can be further separated into "unified" and "uncoupled”
theories, where the two differ in their approach to the treatment of rate -
independent and rate—dependent inelastic deformation. The uncoupled
theories decompose the inelastic strain rate into a time-independent
plastic strain rate and a timedependent creep rate with independent
constitutive relations deseribing plastic and creep behavior. Such
uncoupling of the strain components provides for simpler theories to be
developed but precludes any creep-plasticity interaction. Recognizing that
cyclic plasticity,creep and recovery are not independent phenomena but
rather are very interdependent, a number of "unified” models for inherently
time~dependent nonelastic deformation have been developed recently.

Classical incremental plasticity theorlies are macrophenomenological
. because they base the derivation of state variables purely on experimental
results without direct reference to the microstructure of the material.
Most incremental plasticity theories have four major components: (1) a

stress-elastic strain relations, (2) a yield function describing the onset



of plastic deformation, (3) a hardening rule which prescribes the
strain-hardening of the material and the modification of the yield surface
during plastic flow, and (4) a flow rule which defines the components of
strain that are plastic or nonrecoverable. Research in this area is
voluminous. For example, Zienkiewicz and Cormeau! developed a rate
dependent unified theory which allows for nonassocliative plasticity and
strain softening, but does not model the Bauschinger effect or temperature
dependence. Extensions of classical plasticity to model both rate and
temperature effects were presented recently by Allen and Halsler2, Haisler
and Cronenworth3, and Yamada and Sakuraill.

In the nonlinear viscoelastic approach, the constitutive relation is
expressed as a single integral or convoluted form. This type of
constitutive model employs the thermodynamic laws along with physical
constraints to complete the formulation. A detailed review of several
existing theories is presented by Walker3. Walker'sd theory 1s based on a
unified viscoplastic integral developed by modifying the constitutive
relations for a linear three paramter viscoelastic solid. The theory
contains clearly defined material parameters, a rate dependent equilibrium
stress, and a proposed multiaxial model. An important shortcoming of
Walker's theory is its failure to model transient temperature conditions.
Many other nonlinear viscoelastic theories have been proposed including
those by Cernocky and Krempls, Valanis’ and Chabache8,

The microphenomenological theories attempt to represent the response
" of polyerystalline materials in terms of various micromechanisms of
deformation and failure, Various dislocation theories have been developed
to predict plastic deformation in terms of dislocation interaction, slip,

glide, density, etc. Most of the material models developed, to date,



depend primarily on the number of state variables used and their growth or
evolutionary laws. Many of the recent "unified" microphenomenological
theories have been discussed and evaluated by Walkerg, and Chan et. all0,

One example of a microphysically based constitutive law is an
elastic-viscoplastic theory based on two internal state variables as
proposed by Bodner, et al.'l, These authors,demonstrate the ability of the
constitutive equations to represent the principal features of cyclia
loading behavior including softening upon stress reversal, ¢yclic hardening
or softening, cyclic saturation, cyeclic relaxation, and cyclic creep. One
limitation of the formulation though is that the computed stress-=strain
curves are independent of the strain amplitude and therefore too "flat" or
"square",

Miller'2 has reported research on the modelling of cyclic plasticity
with "unified" constitutive equations, He also recognizes the shortcomings
of many theories in predicting hysteresis loops, which are oversqaure in
comparison to observed experimental behavior. Improvement is accomplished
by making the kinematic¢ work-hardening coefficient depend on the back
stress and the sign of the nonelastic strain term. Theories that are
similar in format to Miller's have been proposed by Krieg, Swearengen and
Rhode!3 and by Hart!'¥, The models use two internal state variables to
reflect current microstructure state and are based upon models for
dislocation processes in pure metals. All these constitutive theories were
formulated without the use of a yleld criterion., Since these models do not
" contain a completely elastic regime, the function that describes the
inelastic strain rate should be such that the inelastic strain rate is very
smallhfor low stress levels, Theories with a yield function and a full

elastic regime have been developed for the case of isotropic hardening by



R°bin5°h‘5, and by Lee and Zav_r‘el16 for both isotropic and directional
hardening;

As previously noted, the quantities utilized in the small strain
theory of viscoplasticity (stress, strain, stress rate, and strain rate)
are defined only within the assumption of "small strains". Yet the precise
definition of what constitutes "small strain® is always left unstated.
Whether or not the stresses for a giyen case are "small" cannot be
determined a priori by geometric considerations. 1In general, one cannot
know in advance whether for a given loading of a material the "small
strain" assumption (always left undefined) will hold or not. The question
of whether the small-strain approximations are valid is always avoided in
the "small strain™ literature, Furthermore, as H11117 points out, the
really typical plastic problems involve changes in geometry that cannot be
disregarded. In many cases, for example, it is sufficient to take into
account finite plastic strains and small elastic strains or vice versa.
From the theoretical viewpoint it 1s desirable in all cases to have a
theory which intrinsically al;ows for both the elastic and plastic strains
to be large. Such a theory of course, must reduce to the earlier mentioned
special cases, as limiting cases. Furthermore, such theories provide a
check for tnose which are obtained by generalizing small strain theories.

The mathematical theories of deformation and flow of matter deal
essentially with the gross properties of a medium. Heat and mechanical
work are considered as additional causes for a change of the state of the
" medium. The resulting phenomena in any particular material are not
unrelated. Therefore, a thermodynamical treatment of the foundation of the
theory of flow and deformation is appropriate, and indeed the obvious

approach. Two very different main approaches to a thermodynamic theory of



a continuum can be identified. These differ: from each other in the

. fundamental postulates upon which the theories are based. An essential
controversy (a good survey of this controversy is given in Ref. 18) can be
traced through the whole discussion of the thermodynamic aspects of
continuum mechanics. None of these approaches is concerned with the atomic
structure of the material, They, therefore, represent purely
phenomenological approximations. Both theories are characterized by the
same fundamental requirement that the results Should be obtained without
having recourse to statical or kinetic methods.

Within each of these approaches there are two distinct methods of
describing history and dissipative effects: the functional theory19, in
which all dependent variables are assumed to depend on the entire history
of the independent variables, and the internal variable approachzo, wherein
history dependence is postulated to appear implicitly in a set of internal
variables. For experimental as well as analytical reasons2'»22 the use of
internal variables in modeling inelastic solids is gaining widespread
usage, in current research. The main differences among the various modern
theories lie in the choice of these internal variables.

The predictive value of an elastic~ viscoplastic material model for
non-isothermal, large deformation analyses depends therefore on three basic
elements:

a) the nonlinear kinematic description of the elastic-plastic deformation.
b) thermodynamic considerations
¢) the choice of external and internal thermodynamic variables.
as well as on their interactions.
The problem of viscoplastic deformations in shells has been treated at

several levels of approximation and generality.



The simplest approaches* are based on the assumption of infinitesimal
displacement gradients (which implies infinitesmal strains) and a material
model of stationary creep, sometimes with an approximate inclusion of
primary creep.

A more general analysis utilizes shell kinematics for moderately large
displacement gradients (at least some of them), infinitesimal strains, and
material models of stationary or simple non—stationary creep*. Ths type of
assumption is capable of solving problems of creep bucklingzu, and it does
reproduce the sometimes stiffening effect of the interaction between the
normal forces and the normal deflection. Extension of these kind of
formulation with a viscoplastic material model is presented in Refs. 25,
26, & 27. The use of numerical method528 makes possile the solution for
many non-trivial types of structures,

The problems of large strains, which arise in the analysis of large
creep or thermal deformation of shells, have not been treated at all in a
general manner. Recognizing that finite strain effects are present in
these problems, reliable prediction demand tht such effects be included
rationally and proberly in the analysis. 1n addition to the necessary
basic kinemtical and dynamical equations of the shell theory, such an
analysis must incorporate a correctly invariant formulation of the material
equations and requires an evaluation of the strain-rate tensors through the
thickness of the shell. Such an analysis cannot be found in explicit form,
at least in the readily accessible engineering literature.

Several authors have developed mathematical description of the

"kinemation of the three dimenslional deformation of elastic or

* A comprehensive survey of these works is given in Ref. 23.



viscoelastoplastice materials29,30, However, it is not clear how to best
select to reference space and configuration for the stress tensor, bearing
in mind the rheoclogies of realistic materials. Although an intrinsic
relation, which satisfies material objectivity can be used31-32, the
choice is not unique (see for example Refs. 30, 33, 34).

1.2 Purpose of the Present Study

The objectives of the present research are to develop a general
mathematical model and solution methodologies for analyzing the structural
response of thin, metallic shell-type structures under large transient,
cyclic or static thermomechanical loads. Among the system responses, which
are associated with these loads and conditions, are thermal buckling, creep
buckling and ratchetting. Thus, geometric and material type nonlinearities
(of high order) can be anticipated and must be considered in the
development of the mathematical model. Futhermore, this must also be
accommodated in the solution procedures. The results obtained from this
analysis are compared with the available experimental data, as well as with
results obtained from "small strain" analyses in order to ascertain the
range of validity of the "small strain" approximation.

1.3 Synopsis of the Present Study

Secton 2 contains the concepts that are necessary for the development
of a general "finite strain" theory for thin bodies with path-depeﬁdent,
time~dependent and temperature-dependent material nonlinearities, |

A complete true abinito rate theory of kinematics and kinetics.for
continuum, without any restriction on the magnitude of the strains or the
deformations is formulated. The time dependence and large strain behavior
are incorporated through the>1ntroduction of the time rates of the metric

and curvature in two coordinate systems; a fixed (spatial), and a convected



{material) one. The details of the reported developments are carried out
by using tensor analysis. Special attentlion is directed to coordinate
transformations as applied to continuum mechanics. Consideration of the
kinematics of space (i.e., the intrinsic rates of change as they are

observed by a geometer within a closed neighborhood of material particles)
focused on the distiﬁction between a fixed (spatial) coordinate system and.
a convected (material) coordinate system. Moreover, the rates of change of
tensors are presented in both systems, taking the various tensor and
kinematical effects into account. The relations between the time
derivative and the covariant derivatives (gradient) are developed, and
these illustrate the possibilities of curved space or motion.

The time derivatives are applied to the basic laws of continuum
mechanics and thermodynamics to generate the equations of equilibrium rate
and those for the compatiblity of the deformation rates. Finally, the
principles of the rate of virtual power and the rate of conservation of
energy are introduced and employed, and these should provide a basis the
development of computational methods.

The general form of the constitutive equations, employed in the
analysis, is presented in Section 3.

The metric tensor (time rate or'change) in the convected material
coordinate system is linearly decomposed into elastic and plastic parts.
In this formulation, a yield function is assumed, which is dependent on the
_rate of change of stress, metric, temperature, and a set of internal
variables. Moreover, a hypo-elastic law is chosen to describe the
thermo-elastic part of the deformation.

A time and temperature dependent viscoplasticity model is formulated,

in this convected material system, to account for finite strains and
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rotations. The history and temperature dependence are incorporated through
the introduction of internal variables. The choice of these variables, as
well as their evolution, is motivated by phenomenological
thermodynamic considerations. The nonisothermal elastic-viscoplastic
deformation process is described completely Dby "thermodynamic state"
equations.

Many pitfalls in the analyses of various investigations are indicated.
A very important point that has been consistently neglected by many
analystsjand computer programs is to indicate precisely in what form the
constitutive properties have to be 1lnput. Most investfgators after an
elaborate treatment of a general theory in tensor notation, leave undefiﬁed
the constitutive equations to be measured in the laboratory. In Subsection
4,1, the homogeneous uniaxial irrotational deformation of a continuum is
treated, with at least two purposes in mind: (1) to give a clear physical
understanding of the quantities involved in the analysis (which is not
possible to obtain through the tensor index notation) and (2) since the
most common material test is the uniaxial test, to identify precisely what
are the quantities thaé one should measure in the laboratory (as well as
how to express these data to conform with the constitutive equations used
in the theoretical material model).

In Sections 5 and 6, the previous developments of Sections 2 and 3 are
utilized to derive consistent kinematic, dynamic and constitutive
equations, which are valid for finite strains and rotations of thin bodies.
" Some of these equations seem to be original (have not been found in the
literature by the authors).

Five different shell theories (approximations) iﬁ rate form, starting

with the simple Kirchhoff-Love theory and finishing with a complete
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unrestricted one, are considered in Section 5. Three different curved and
straight beam problems are studied in Section 6. The results from the
"finite strain® analysis are compared with the results from the
nsmall strain™ theory to ascertain the range of validity of "small strain"”
theory for the present type of problems. Moreover, the time and
temperature dependence and effects of the new constitutive relations are
compared with the results of the classical formulations of
thermo-elasto—-plasticity.

The future research is summerized in Section 7.

12



2. GENERAL FORMULATION; THREE-DIMENSIONAL CONTINUUM

2.1 Introduction

The inherent difficulties associated with nonlinear continuum
mechanics, along with theoretical considerations, lead to the formulation
of incremental constitutive equations. Thus, the rate concepts arise and
reformulation of the basic laws with the aid of the rate approach becomes
essential., As usage of tensor operators is a common practice in the scope
of continuum mechanics, their rates need to be formulated rigorously.

It is obvious that the subtleties of tensor analysis and of the rate
concepts, distinguishing between the spatial and the material descriptions
of the continuum, require careful examination and rigorous formulations;
otherwise, inaccuracies are likely to be encountered, especlally in
conjunction with the derivation of the rate of a gradient.

The objectives of this section are then the systematic formulation of
the rates of ténsor operators, ylelding integral and differential rate
theorems. Resultant theorems are definitely meaningful. Moreover, the
consistent considerations throughout the process of formulation are vital
ingredients for gaining insight, in anticipation of further developments,
when dealing with special structural elements.

Treatises that have influenced this write-up are attributed to
Truesdell et al.35737, Sedov38-40, Green et al.41-%3, sokolnikort*# and
. McConnelll5,

The tasks of the reported developments are carried out with the aid
of tensor analysis. Tensor definitions, notations, theorems, corollaries,

etc. are rephrased in Subsection 2.2. This brief refresher on tensor
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analysis follows Sokolnikoff4% and McConnell5, Special attention 1is drawn
to transformation of coordinates, bearing in mind the applications of
continuum mechanics.

Subsection 2.3 is dedicated to the kinematics of space, i.e., the
intrinsic rates of change, as they are observed by a geometer within the
closed neighborhobd of material particles. The distinction between
coordinate systems (essential cornerstone of tensor analysis) is
specialized to the one between the fixed (spatial) system and the convected
(material) one. Only the Lagranglan déscription is discussed because the
Eulerian one does not seem adequate for solids. The geometric ratés are
examined in detail, as long as the geometer, whose explorations focus upon
the material system, is capable of observing. This subject has been
thoroughly elaborated upon by'Durban and Baruch"6, whose discipline follows
the original ones of Gibbs37 or Bloch”e, and by Mendelssohn and Baruch*9
whose discipline in turn follows the work of Aris50, Thne latter two
illuminate the facets of the various time derivatives (namely, rates of
change) with the help of the conventional tensor notation. This approach
" will be followed, herein.

Subsection 2.4 consists of the development of the rates of tensor
components. Numerous publications (including textbooks), especially those
oriented toward fluid mechanics, have dealt with the problem of rate of
change of tensor components. Since the present work is concerned with
_ solid mechanics, the various derivatives are golng to be associated with
material points and not with the spatial ones. Unlike the conventions of
fluid mechanics (ef. Aris50) and following the ideas summarized by Durban
and Baruch"6, and by Mendelssohn and Baruch“9, rates of change must be

distinguished by the location of the observer.
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The intrinsic description id insufficient, as some basic laﬁs refer
to rates, which are observed within the fixed system. The partial time
derivative and the total derivatives, although defined with respect to the
fixed system, are formulated in the material system in a manner that
manifests their tensor éharacter. Besides, rigorous formulation of the
time derivative of a covariant derivative (gradient) enables the
classification of problems with regard to the curvature of space or motion.
The time derivatives are applied to the basic laws of continuum mechanics,
to obtain the equtions of equilibrium rate and the compatibility of
deformation rates. Finally, the principle of the rate of virtual power is
derived.

2.2 Geometry and Statics of the Continuum

Let the n-dimensional space be decribed by two systems of coordinates

x! and u® (Fig. 2.1)

w u} : N X"
*s

Fig. 2.1: System of Coordinates

Point P can be characterized either by its own coordinates xi(P) or

by ua(P). The same holds true for the neighboring point Q. As for the arc

PQ, it is characterized by the differences axi and au®. When Q approaches
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P, differences are replaced by differentials and the following

transformation stems

i
axt = 2 g0 ; du® =

au’ ox

dx (2.2.1)

where dx1 and dua are the components of the differential of the position
vector. In Eq. (2.2.1), and from now on,-the summation convention is
implemented, i.e., a repeated (dummy) index is summed over its entire
permissible range (from 1 to n). Any set of n components, assuming the
values a’ when observed in the system (u',....,u") and the values Al when
observed in the other system, and which obeys a transformation law similar

to Eq. (2.2.1),
A = — a ; a = —A", (2.2.2)

is defined as "the contravariant components of a vector". Distinction
between the systems of coordinates is made by using capital (small) letter

and Latin (Greek) indices for quantities as they are observed in the
xi-system and ua-system, respectively.

If there exists a scalar function ¢ which is point dependent, then,

its gradient obeys another transformation law, namely

i
8¢c - 3¢i on . (2.2.3)
du X ou

Any set of n components a0 snf Ai' obeying the transformation law

(2.2.4)

16



is defined as "the set of covariant components of a vector". It should be

noted that the components of the position vector (xi or ua) often do not

constitute components of a vector, according to the definitions of Egs.
(2.2.2) and(2.2.4). 1t is obvious that "superscript" indices denote
contravariant components and "subscript" indices covariant ones. Moreover,
it can be shown that summation conventions are applicable in a "diagonal”

manner.

The metric properties of the space are determined by the length of
the elementary arc (as Q approaches P; see Fig. 2.1) in differential form

d32 = GijdxidxJ (2.2.5)

where ds is the arc length. The quadratic form, Eq. (2.2.5), is specified
by the elements (Gij) of ‘a symmetric positive definite matrix. If the
space can be described by a system (say yi) of rectangular Cartesian

coordinates, the form of Eq. (2.2.5) reduces to

d32 - dyidy1 - <S“dy1dy:j (2.2.6)

where Gij are the Kronecker deltas. However, points are observed in the

a
u -system too, hence

d32 = gcsduaduB and
(2.2.7)
Bag ~ ‘a‘% dxi 61
du du

17



The sets Gij and 808 are defined as the covariant components of the metric
tensor. It is symmetric tensor of rank two. Any set of n2 components,

obeying the transformation rules

Gij . X de acB
au’® du
i B
aly - _Qx__agj_ a%p (2.28)
du- 9Xx
A = 222 auﬁ a
13 ¢t axd OB

is defined as the set of contravariant (mixed, convariant) components of a
tensor of rank two. A tensor {is symmetric if it is not affected by an

interchange within a pair of indices (i.e., Ajy = Ayts ald = adi, ete.).

The dots in the mixed components help to distinguish between agé, a&?,etc.

The conravariant components of the metric tensor are readily

available by matrix inversion, namely
i3 i af ]
G Gjr 8% 8 By 83 (2.2.9)
It is obvious that the mixed components of the metric tensor are the

Kronecker deltas. The metric tensor facilitates the following operationsi

raising indices

a o8 . _oB _ _op_BO . 2% = oOP
a g ag a g g a,a B =8 a, ‘2.2.10)
lowering indices
B, - go, .°B _ pB
a gasa ; aaB 8ccgsoa Poag. gapa (2.2.11)
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inner product

o B

2%, = 8%°a b, = gOBaabB - a_b° (2.2.12)
No transformation rule is violated by Egs. (2.2.10) and (2.2.11).

From now on, the mixed components of a tensor are golng to be witten
without dots, as no raising or lowering is intended. The idea is to keep
track of the omitted dots and remember that their loction is identical in
any system of coordinates, Then, the set of nP*d components, obeying the

transformation rule

i B 8
11...1p ax 1 3 1 M q 0,... ap
A = coo ves —— & (2.2.13)
J,eeed V] 3 J B.... B
! q Ju ! X ! X% q !

is defined as the set of the covariant (rank p) and covariant (rank q) com=-
ponents of a tensor. Raising or lowering an index affects the nature of
the transformation, Eq. (2.2.13);

It often occurs that although a set of indexed quantities can be
obtained, the verification of the tensor character of such a set by
inspection (whether the set follows the transformation law of Eq. (2.2.13))
may be quite cumbersome. The inconvenience of the verfification of the
transformation laws can be circumvented with the aid of the quotient
rule, as follows: let A(i 1....ip, 31....J;) denote a set of nP*Q gquantit-

ties, the indices of which are i1 through ip and J1 through jq, and let

denote the components (contravariant of rank s and covarariant

Jieedd i,...1
. 1 s _ 1 p-r
A (11..., 1p. J1...Jq] Bj 4 c (2.2.14)
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where the C's in Eq. (2.2.14) are the components of a tensor, and the A's
i i

p
31....31.

are also components of a tensor, namely A This rule is very

ﬁseful in the course of tensor algebra and tensor calculus as relations
such as Egs.- (2.2.14) are often by-products of various derivations. Thus,
tensor characteristigs can be easily verified (or identified).

It is often required to calculate n-tiple integrals over a specified
domain in the n~dimensional space. The n-tiple "volume" element 1is
calculated as follows: 1let the n-tiple parallelopiped be constructed from
a vertex at point P, the edges along the coordinate lines (dx} for the i~th
edge) and the opposite vertex at point Q, the coordinates of which are
obtained by adding dxi to the coodinates of P: then, the volume dV is

- V& ax'... ax” : (2.2.15)
where G is the determinant of the square matrix, the elements of which are
the covariant components of the metric tensor.

Christoffel symbols of the second kind are defined by the formula
is ( aGJs R aGks - aGJk )

¢  awd x®

These symbols are not tensor components. However, Christoffel derived a

1—

(2.2.16)

Tk = 2

transformation rule

2°x" VP " _.r axd  axX
LA S = r K —3 (2.2.17)
auuuB o8 a’ J aw® au

where the T's denote the Christoffel symbols, derived from the g's in the

’ ua-system according to Eq. (2.2.16). It is obvious that Christoffel symbols

do not transform like tensor components unless the coordinate transforma-

tion (between the u's and the x's) is affine.
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There are several tensor operations, in order to produce tensors,
e.g,: addition (tensors of same rank), outer products (without repeated
indices), contractions (as implied in Eq. 2.2.14)), etc.. All these
operations are algebraic in nature. However, tensor fields (i.e., the
components depend on the coordinates) can be operated upon
bydifferentiation in order to produce tensors of higher ranks. It can be

shown that the covariant derivative of a tensor, defined as follows

Ai1...ip o2 A11...1p ) ; ril Ai1...r ...ip
11"'Jq,k axk Jl"'Jq r=1 Tk j1...jq
q rr Ai1...1P
=1 J)k J1"‘r"‘Jq (2.2.18)

does actually transform according to Eq. (2.2.13) as a set of components
contravariant of rank p and covariant of rank q + 1. The comma in Eq.
(2.2.18) denotes the covariant derivatives not to be confused with partlial
derivatives with respect to the spatial coordinates. The combinmation of
dots and of the index r in Eq. (2.2.18) means that the repeated (dummy)
index replaces the Ath subscript (or superscript), for the sake of contrac-
tion. It should be noted that the covariant derivatives of a tensor
really show how it varies while the observer is moving along a coordinate
line. Hence, the operators of vector analysis (gradient, divergence, curl,
etc.) have to be phrased in terms of covariant derivatives.

As a consequence of the definition, given by Eq. (2.2.18), it can be
verified that covariant differentiation of sums and products should be
) accomplished in the same manner as partial differentiation does. Moréover,

Ricci's lemma

aof :
Saa’v g ,v=20 (2.2.19)
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suggests that the components of the metric tensor behave like constants as
long as covariant differentiation is concerned., Thus, the operations of
raising and lowering indices and (on the other hand) of covariant
differentation are commutative.

Naturally, covarliant derivatives of higher order are obtained

systematically, i.e.,

fyeeed L.l
A, hp - (AJ Jp ) (2.2.20)
1... q,kl 10.. ’q,k ,1

The order of differentation may be significant, as

P
A - A = R (2.2.21)

1,jk i,kj 13k
where the R's are the component of the tensor of Riemann-Christoffel namely

P .8 p__3 ;P s p_ .8 P
R-ijk %3 ik 2K rij * Tik rsj riJ Tk (2.2.22)

This tensor manifests the curvatures of space. If and only if, the
Riemann~-Christoffel tensor components vanish identically, then the space is

Euclidean (i.e., can be represented by a system of Cartesian coordinates).

The transformation tensor xi is defined by

A1
xt o« 2% (2.2.23)

e .0
1t can be proven that the quantities xi transform like the contravariant

components of a vector in the Latin indices (say, if the x~coordinates
. transform to another system of x~coordinates) and like the covariant

components of a vector in the Greek idices (if the u-coordinates transform

to another material system of u-coordinates). Therefore, the symbol xi is
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written (following Sokolnikoff Ref. [44]) with a Latin superscript and a
Greek subscript. A similar reasoning yields the definition of the inverse

transformation tensor

. du_ (2.2.24)

A treatment of double tensor, such as xi, requires a definition of

total covarlant derivative or the tensor derivative., Let a double tensor

be given by

aZee b (xu0) (2.2.25)

Its total covariant derivative is defined by

d...B 1...]3 . p0---B i1...] G...B8 1i...] . n
AY...(S K..ol5€ AY...G Keool,F * AY...G Keoool,m XF
BAO...B i-o-J .
G...B i...3 . Yeuo Keool a PeseB i...3
where, Ay s k...l,e ¢ * Ve Nl s k..t eee(22.2T)
ou
- 4P Aa...B i...3 ‘.

YE pee.S koool

Thus, it is a partial covariant derivative with respect to u°, where x1 are
constant. For tensors which are not double, the definition given by Eq.
(2.2.26) reduces to the regular one.

The transformation tensor x; fulfills (x1 depends on u® only),

i A )
X i i
- - X;a = xu (2.2.28)
ou

The tensor formulation of the basic equations of continuum mechanics
has been presented in numerous books, e.g., Fun351, Sokolnikoffhi4, Green
and Zerna'l ~ote. Let the three-dimensional Euclidean space (i.e., our

empirical engineering space) be described by the system of coordinates x1i.

23



The solid contiquum occupies a definite -volume in space, the volume elehent
is denoted by dV. The continuum is bounded by a surface, the area element
is denoted by dA, vl denote the contravariant components of the unit normal
to the surface, i.e., a unit vector that is perpendicular to the surface,

namely

GijvivJ -1 (2.2.29)

An area element consists of specific material particles, Let Y stand
for their density. This concept is analogous to that of mass density,
however, it is intended to specify a measure for the material entities and
not the mass of inertial considerations. Since no dynamic¢s are involved,
let ¥ be called the "area mass density" and let dm be the "mass of an area

differential element, i.e.,

dm = Y dA (2.2.30)
1r dPl denote the components of the force vector, acting on the area
element dA, then the surface tractions are defined as the mass density of
that force vector

i i
1. 9yl
TN = T ® = (2.2.31)

i
Ti - dp
dm )

’
The last equality.of Eqs. (2.2.31) defines the "conventional" surface
tractions. The present definition, Egs. (2.2.31), is based solely on
grounds of convenience in view of the foreseen kinamatic developments.

The contravariant components of the stress tensor, as defined by

Cauchy (cf. Fung5!, Sokolnikoff®!, etc.) are denoted by olJ, and they are

associated with the tractions and with the unit normals as follows

I - Jijvi (2.2.32)
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Thus, it is obvious that the stress components are associated with a
specific volume, whereas the components of the second Piola-Kirchhoff
stress tensor (cf. Hibbit et al.>2)

ol o £ ¢l (2.2.33)
pO

are associated with mass (material entities) as stated in conjunction with
the traction, where p and p, stand for the current mass density and for a
reference one, respective;y.

As long as the "classical" terminology of tensor analysis is
concerned (cf. Sokolnikoff““), the components of the stress tensor (old)
are those of absolute tensor, while those of the Piola-Kirchhoff stress
tensor (S1J) constitute a relative tensor.

Let fJ denote the components of the body forces per unit mass. The

equations of equilibrium are then

o, v ot -0 (2.2.34)
accompanied by the boundary conditions, Eqs. (2.2.32) at the tracted
boundaries.

These equations are based on equilibrium considerations exclusively.
The kinematic constraints are systematically incorporated by the principle
of virtual power (several publications name it "The Principle of Virtual
Velocity™). Let GVJ denote the cémponents of the vector of virtual
velocity, i.e., a vector field of values of velocity at which the material
) part;cles are capable of moving, obeying all kinematical restrictions

(continuit&, prescribed velocities where the virtual ones vanish, etc.).

Then, the integral theorem
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Jf oijcsvJ (v - J[ pfjévjdv ~ J YTJ6deA = 0 (2.2.35)
v v A

is equilvalent to the equations of equilibrium and to the complete set of
boundary conditions (Note that 6vy = 0 implies that vj is prescribed).

2.3. Kinematics of the Continuum

Let a continuum be described by the two coordinate systems of Fig.

2.1 The xi-system stays at rest and will be labeled as "the fixed system",

while the u°-system is associated with the material points and will be
labeled as "the material system™. As the continuum is moving and
deforming, coordinates xl of a material point (say P) are changing, i.e.,
xi(P) are time-dependent. Yet, a material point preserves its identity and
hence its material coordinates (ua) are not changing in time (t). The

coordinate lines are assumed to "deform" with the continuum in order to

enable the material points to keep their coordinates (in the ua-System)
unchanged.
The components of the velocity vector in the fixed system are defined

by:

i axi

- (2.3.1)

v

While a geometer at P is observing, he cannot recognize any change in the
coordinates of any point, however, the main purpose of a geometer's
interest, namely distances, are obviously changing. As a matter of fact,
the differential form of Eq. (2.2.7) should be examined. To do so,

following Ref. 35, we must define material derivatives.

i-.o-J 0.-..B’Ai....J 0-0008 ( i

a
Let A, """y (7T eyl t) be some double tensor
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. DA

DA® "
depending on both x! and u,- Then its material derivative Dt-.. is given

by
innnj C!...B i'aoj 0...8 Te

PA ol ve.as . w1 v...s LI s s

Dt ot u® = const 9x 8q kK...1l v...$
Xi = const

(2.3.2)
aA...
- K] i--oJ 0...8 - q’ e e e so q
e Tl R v TtV T th e V

ua = consl

x1 = const

The general definition of Eq. (2.3.2) has two particular cases:
A) When one uses only the fixed spatial description for the description of
tensor A, i.e., A = A(xi,t) (as is common in fluid mechanies), then its

material ‘derivative, Eq. (2.3.2), becomes

io.oJ anooB aAoQ-

DA
Keeel Y...8 _ L., P Aty (2.3.3)

Dt ot xi - const e erq

The second term in the right hand side of Eq. (2.3.3) is called the

translation term of A™°° .

B) When one uses only a material description for A, i.e., A = A(u°,t) (as

is common in continuum mechanics) the material derivative becomes

ioo-J 00008 ev e
Keeil ¥...8 _ ML o frlaseed o8,
Dt ot 8q K..o1 v...68

a
u = const

s plecdoec8 4 a (2.3.4)

T Tkats 1 v.lls
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D(.)
Dt

worthwhile to notice that, for single tensors in the material description,

is also called an intrinsic derivative of A. It is

In this case,

the definition in Eq. (2.3.4) reduces to a simple partial derivative:

A aOeeoB 0...B
DAy s . Mv...s

Dt ot a (2.3.5)
u = const.

For the velocity vector, vi, one can show that the definition given by Eq.

(2.3;1) can be replaced in the following manner

i i i
oo ox X (2.3.6)

dt 3t Dt

v

From here on, éll tensors will be given in the material description only,
unless otherwise specified. So all material derivatives of the different
tensors will be given by Eq., (2.3.4) (for the most general case of double
tensors).

Differentiation of Eq. (2.2.7) yields

D D_ B

2 ]
ot (ds®) = 2ds (dq) - (Dt goB) du’du (2.3.7)
By dividing both sides of Eq. (2.3.7) by 2d52, one obtains
2 (10g ds) = ( ) @ af (2.3.8
bt ‘98 Dt Bag’ ds ds 3.0
a

Obviously, g is a unit vector, and Eq. (2.3.8) expresses the logarithmic

_deformation rate. The clue for the intrinsic rates of change may be
unraveled, then, by the derivation of the rates of change of the metric
tensor. Hence, the second of Egqs. (2.2.7) should be differentiated to

yleld
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%E (808) = %E (xingiJ] (2.3.9)
As attention is drawn toward the differentiation of Eq. (2.3.9), it
should be noticed that the components of the transformation tensor are
associated with a material point (they are changing while the continuum is
moving). Nevertheleés, the components of the metric tensor are associated
with a spatial point and their sole cause of variation is the variation of

the x-coordinates. Hence, they are inherently independent of time. Then,

time differentiation yields

i J

Dx Dx

9 - a J i Ta
at Zag Gij ( bt g ' *a Dt ) ) (2.3.10)

The time derivatives of x; follows the general form of Eq. (2.3.4)

i i
Dx ox i
a o i i s k 2 9X . i sk
Dt 5t ek ¥sk %' T 3t ( ® IR L 5
-2 BLI]*TI x> v¥ (2.3.11)
o ot sk "o i
du

The last eqhality in Eq. (2.3.?1) is justified by the fact that material
coordinates (u®) are time~independent. Use of Eq. (2.3.6) into Eq.

(2.3.11) and of the definition of covariant derivatives, Eq. (2.2.26)

yields

Dxi 2 1 i ks 1 5.1
S " T (v)+ 1. v X, =V -v (2.3.12)

Since v; denote components of a vector in the fixed system, they can be

_transformed to the material system by Eq. (2.2.2)
v1 = x1 v VP uPyvh (2.3.13)
o r
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Naturally, the velocities in the material system do not measure time
derivatives of coordinates; their sole significance stems from the
transformation rule, Eq. (2.3.13), as the geometer cannot measure them
directly (this argument will be dwelt upon later). Hence, thusly operating

on Eq. (2.3.12) yields

i i p ip
V,a (x ) p'mv + xpv’c (2.3.14)

Special treatment is required for the evaluation of x; o ° As already

stated, xi are tensor components in both coordinates, p & o systems, then by

Eq. (2.2.26)

- P 1 1 J
au°au8 Yqup + er S (2.3.15)

However, substitution of Eq. (2.2.17) into Eq. (2.3.15) yields

x1 =0 ‘ (2.3.16)

and finally

D i i ip
BT (xa) VT XY (2.3.17)

Now, Egq. (2.3.10) may be expressed in terms of velocities (deformation

rates)
D_ . [N 13,0
bt 8ag = Y13 (x3v74 Xp * X5 X, V.B)
v o+ g v o=y + v (2.3.18)
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The components of the deformation rate are then, defined as

A
1 .
de =3 (V8" VB.G) = dgq (2.3.19)
and thus,
o p
D ' du” du
ot (1og ds) = dUB a5 ds (2.3.20)
D
ot (gaB) - gch (2.3.21)

The intrinsic geometer is, by no means, capable of measuring
velocities directly, Eq. (2.3.13), yet he can measure metric rates, Eq.
(2.3.18), and obtain the velocities by spatial integration of Eq. (2.3.18).
Two problems arise in conjunction with this: (a) a system of equations

like Eqs. (2.3.19) {(i.e., given da and required Vo is not necessarily com-

8
patible, and (b) even if compatibility is ascertained, the solution is not

unique. Treatment of the first problem will be postponed, while the second

is alleviated by the definition of the spin tensor

(v -v, }J=-w (2.3.22)

then
v =d ., +w,_ =d, - W (2.3.23)

B

The derivatives of the contravariant components g° are readily

obtained by the differentiation of Eq. (2.2.9), namely

) aB ) ay o
T (g 33v) 3t (6.1) 0 (2.3.24)
hence
9 of _, ab :
By 3t & - 2g deY (2.3.25)
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Multiplication by g and contraction yield

3 _pa _ _ , aB pY
3t g 288 ds.y (2.3.26)

As soon as the deformation rate is established as the time derivative
of the metric tensor, the intrinsic characteristics of the continuum (i.e.,
Christoffel symbols, the Riemann-Christoffel tensor, etc.), being metric
properties of space, are readily differentiated (with respect to time).
This depends on the deformation rate (doB) and not on the spin (wuB)’ As
an illustration, the determinant of the metric tensor (g) is a measure for
a volume element (a detailed proof appears in Ref. 49 and the result for

the rate of dilitation is

%E T -z gusdua - T v‘:p (2.3.27)

It is evident that the spin components do not affect the expressions
in Eq. (2.3.27) (dilitation is not affected by the spin).

As Christoffel symbols, Eq. (2.2.16), play an essential role in
tensor calculus, the need for an evaluation of their time derivatives

cannot be underestimated. Hence

9 _a 1 2 _aB ang ag80 - agﬁg
= = (=) + )
It po 2 ot 3’ 2w’ aus
og 98 98
, 1 gaB R ( p8 , P8 _ P9 ) (2.3.28)
2 ot o [ B
u u Ju

Systematic treatment of the first term in Eq. (2.3.28) yields

( %E g®8) . 2y - - 2y’ g%Bq (2.3.29)

1
2 0088y po® gy
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Now since the u-coordinates are time-independent, then

12 agps) C a1 %8 .2 g (2.3.30)
2 Bua 3u° 2 ot BuU P8
= d + Y a- + Y d (ef. Eq. 2.2.18)

pB,0 po uB Bo vwp

Interchanging the triads of indices and rearranging yleld

o8 o8 98
% 808 gt ( s§,+ So _ go ) - gae(dps L dBo )" dpo A
Ju du oJu ’ ' ’
v
Y ] L]
+ 2 dee) (2.3.31)

Substitution of Eqs. (2.3.29) and (2.3.31) into Eq. (2.3.28) yields

) o 08[

3t Yoo " + d -d ) (2.3.32)

devU Bo,B po,B
In cases where rates like those in Eq. (2.3.32) are desired in terms of

velocities, elementary manipulations lead to

o 1 o o 1 B o B a
o0 " 3 [v.po RO R [r-poo + r.a'p) (2.3.33)

Lo
It should be noticed that although Christoffel symbols are not tensor
componets, their time derivatives are. Specialization of Egs. (2.3.32) and
(2.3.33) for Euclidean spaces are self-evident.

The treatment of curvature rates concludes the discussion of the

kinematics of the continuum. Regardless of the type of space considered,

Eq. (2.2.22) should be differentiated. Then

9 ] 9 a >, _9 o _ . ) o
ot (r . pGT) ot ( 2’ Yp'r * Yp'ry)o au’ ypc YpuYAT] (2.3.3%)
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Changing the order of differentiation results in spatial derivatives or a

tensor, namely

] ( o )
LS G A ) - — =Y ) (2.3.35)
ot auu pT apo at prT

Benefitting from the rules of covariant differentiation

a° v
i e e
ao ot prt ot 0 o ot
u
av® av®
) AT ) 2)
* 7po ot Y Y01' at '’ (2.3.36)
The first pair of terms in Eq. (2.3.34) reduces to
av® 3Y Y
9 (9 _ .o 2 o). pT ) AT ) p)
at ( au’ ypr * Yp1' Ylo) ( ot ),0 * Ypo ot * Yur ot
b
)} Ao
+ 791 3t (2.3.37)

The second pair of terms is obtained by changing indices. Substitution

into Eq. (2.3.34) and rearrangement yield

5 . av“a av“u
ot [P‘DOT) - ( ot ),o - ot ),1 -

al _
(40 ™ oryor * Birype * dprae ~ Go,pr) (2:3:38)

As a summary of the kinematic considerations, Eq. (2.3.28) is
bivalent, On one hand it relates velocities to the logarithmic rate of

deformation. This relation is very useful in applications where velocities
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are the principal dependent variables. On the other hand, if the
deformation rates are given, Eq. (2.3.23) changes its role from formula to
equation, and it must be solved for the velocities. In the latter case,

Eq. (2.3.38) is an essential asset, because it expresses the compatibility
conditions, i.e., a symmetric tensor d08 can be introduced into Eq.
(2.3.18) to yleld the resultant velocities Vyr if they (doB) satisty Eq.

(2.3.38). The commonplace Euclidean space supplies an immediate
manifestation. The the 1's and their time derivatives identically vanish,
and the familiar equations of compatibility from the mathematical theory of
elasticity (cf. Sokolnikoff Ref. [U44]) appear. Kinematics and deformations
of surfaces present another example, then an intrinsic relation like Eq.
(2.3.38) must be equated to the known time derivatives of the
Rieamann-Christoffel tensor (say. from the equation of Gauss, cf.
Sokolnikoft 44y,

2.4 Time Derivatives of Tensor Components

Let a continuum in space be moving (translating, rotating, deforming)
together with tensor fields éssociaéed with its material points. The
‘meaning is that various tensor fields (e.g., forces, stresses, heat fluxes,
ete.) are observed and measured in conjunction with material points. This
is the Lagrangean viewpoint. However, the position of the observer is
very significant. If the observer resides somewhere in the material system
it relates the tensor components to a deforming system of coordinates.
. Thus, the rates by which the components change may appear insufficient for
the complete understanding of the'observed phenomena. On the other hand, a
fixed observer (naturally, in the fixed system), while observing the

various fields in conjunction with a specific material point (he is capable
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of tracing a moving point) associates the components with time-independent
metric properties., It should be stressed that the latter observer does not
pretend to be Eulerian, it is Lagrangean as the former because its scope of
interest (material points rather than spatial points) matters and not his

residence.

Hence, let the symbol —%E_ denote the operation of material deriva-
tive, by which the rate of change is measured within the material system.
Consequently, the tensor components are observed in order to evaluate their
rates of change; however, convective terms (cf. Aris50) originating from

the curvature of the coordinate lines, are also taken into account. On the

other hand, the symbol —%f is used to denote the operation of total deriva-

tive, by which, the rate of change 15 measured from a fixed standpoint.
The components, the rates of change of which are evaluated by the operation
of the total derivative, are refereed to unchanging coordinate linesa. As
rates within such a frame of reference seem to be most adequate for several
applications of mathematical physics (cf. Sokolnikoff"", the rules of total
differentiation have to be elaborated upon).

Let, then, the transformation rule of Eq. (2.2.13) be rephrased with

the ald of the definitions of Eqs. (2.2.23) and (2.2.24), namely

i,....1 i i 8 )
1 p_,1 p
X cens xa u cree uJ a (2.4.1)

A
Jl....Jq a,
The total derivative is defined as the rate of change of the components

11....1

AJ p (including the convective effect and those of curved coordinate
1".. q

lines); however, formal implementation of this definition on Eq. (2.4.1)

leads to:
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dt J1...jq Dt a a j1 J 81...Bq

for the fact is that the partial derivatives of all the bracketed terms in
Eq. (2.4.2) have already been designed to account for the convective
effects. A doubt arises whether the expressions in Eq. (2.4.2) do actually

yield a tensor out of a tensor. As a matter of fact. the sole "trouble" is

embodied in the partial derivative of the tensor components. Let, then u
denote another set of material coordinates, and let barred symbols denote
quantities in the a°~system, then, following Eq. (2.2.13)
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As a consequence of the partial differentlation
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and the sums in Eqs. (2.4.4) vanish because the material coordinates are
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inherently time-independent. Equation (2.4.4) expresses, then, a tensor
transformation rule.

Returning to the definition of Eq. (2.4.2), formal operations imply

a Ai1 . ip i xi1..;xip uB1...qu 3 301...0
dt J1 oJ a,. . a J1 . Jq ot 81...Bq
p
i i i B 8 A,eeal
1 9 A p 1 q_ 1 P
v Y x v (=)o x U eou i a (2.4.5)
re1 N at o, a J1 J 81...Bq
P i, 18, s B By Oq-+e0
+ ¥ oxoxP Uy e ( 3t Yy ) .. ujq ag Bp
=1 % % J1 ) qQ 1°°°Fq

The derivatives in the first term of Eq. (2.4.5) are readlly obtained
from Eq. (2.3.17), those of the second sum may be obtained by

differentiation of the identity

D i o D i
5t (%) uj) = 5t (GJ) =0 (2.4.6)
then
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= -vB o’ : (2.4.8)
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The latter equalities in Egs. (2.4.9) and (2.4.10) stem from interchanges

between repeated indices. Substitution of Eqs. (2.4.9) and (2.4,10) into

Eq. (2.4.5) yields
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This is a typical manifestation of the tensor character of the total
derivatives. It should then be rephrased as the rule for total

differentiation in the material system, namely
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It is obvious that the total derivatives depend on the velocity gradients.

Looking forward towards the influences of the various types of motion, Eq.

(2.3.23) is utilized to obtain

a

d R 1...ap i Qi . 01...op ) § waA a01...p...ap _ % 2 aa1...op
dt 81"'8q dt 81"'Bq =1 *p 81"'8q A1 .Bl 81"'0"'Bq
(2.4.13)
dJ
where the symbol at denotes the operation of the Jaumann time derivative

(ef. Fun351), i.e., total derivative with the rotational effects discarded,

namely.
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The total time derivative and the Jaumann one have two interesting char-
acteristics: sums and products of tensors are differentiated with the aid
of the same rules of the differential calculus, and the derivatvies of the
metric tensor vanish identically. The former statement establishes the
formal readiness of the time differentiation of tensor equations, while the
latter enables lowering (or raising) indices before (or after) the time
differentiation without affecting the form of the equations,

Last but not least, the total differentation of the covariant
derivatives of tensors should be studied. The exact relation between both
differentiations (temporal vs. spatial) is the clue for a reliable rate
theory (and applications). Obviously, the covariant derivative of a tensor
is a tensor, the covariant rank of which is higher (by one) from that of

the original one, hence from Eq. (2.4.12).
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The first term in Eq. (2.4.15) is not familiar, then by Eq. (2.2.27)
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Now, the first term in Eq. (2.4.16) is obtained by the rule of total

differentiation of Eq. (2.4.12), namely
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Substitution of Eg. (2.3.33) and utilization of the characteristics of the
Riemann-Christoffel tensor (Sokolnikoff#¥ presents them as exercises) yield

the final result
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(2.4.19)
In summary, the operations of time differentiation that of covariant one

are permissible only in case of rigid body translations (vv = 0), and any
other motion implies further terms. In a Euclidean space, the effect of
higher tensor rank is added. Curved spaces imply more complicated terms
originating from compatibility considerations.

2.5 The Principle of the Rate of the Virtual Power

The principle of virtual power (or of virtual velocity), as expressed
in Eq. (2.2.35), is equivalent to a set of differential equations
(equilibrium) and associated boundary conditioﬁs,(should be appropriately
selected between kinematical and natural). However, practical reasoning
concerning solution procedures gives rise to basic doubts, as follows. Let
a system of specific body'forces (£d) and specific surface tractions (1d)
act on a solid continuum. It is, natually, deformed and stressed. The
stresses satisfy Eqs (2.2.35) or (2.3.34) but thelr relations with the
" deformation are not self-evident. There are constitutive theories
asserting that considerations of convenience (hyperelasticity) or necessity
(hypoelasticity) introduce incremental "stress-strain" relationships, i.e.,

the stress rate is assumed to depend on the deformation rate. In such
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cases, equations like Eq. (2.2.35) need be manipulated further in order to
obtain terms with stress rates.

The objective of this section is, then, within the scope of obtainihg
the total time derivative of the principle of virtual power. The resultant
virtual theorem may be applicable for the derivation of rate equations
(equilibrium rate and incremental boundary conditions) and for the direct
development of solution methods (e.g., incremental finite elements).
Throughout this section, the space is assumed to be Euclidéan and all
tensor components, following the notations at the end of Subsection 2.2
(Eqs. (2.2.17) and so forth), are measured only in the material system of
coordinates. Hence, the tensor notation reverts to Latin indices, keeping
the material system in mind.

Eq. (2.2.35) should, first, be rephrased

J J
v A

[ oMev. av - [edsv.an- | 1Tdev,am= 0 (2.5.1)
J 3
]
v
Comparison between Egs. (2.5.1) and (2.2,35) may explain the symbol dm, it
stands for the mass of a (material) volume element or surface element

respectively. The volume and the area are varying during the deformation,

the mass remains constant. Total differentiaton of Eq. (2.5.1) yields
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Partial results are readily obtained
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The first integral in Eq. (2.5.2) needs detailed treatment,

ij d(év .
d | [ do [ 13 ,1 [ 1] d
at J 5 vj’idV J dt ij’idv + J o4 dv + J o} ij,i dth
v v \'f v
(2.5.4)

The last term in Eq. (2.5.4) symbolizes the volume changes, however from
Eqs. {2.3.21) and (2.3.27) one can obtain

d K Kk
rry dv = d.K dv = v’de (2.5.5)

The first term in Eq. (2.5.4%) consists of the desired stress rates, and
therefore the incremental constitutive equations should be substituted
there. The remaining integrals in Eq. (2.5.4) should, then, be elaborated
upon, since the time derivative of the (virtual) velocity exists. This is

a typlcal need of the rate of a gradient, by Eq. (2.4.19)
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Collecting terms and rearranging yield
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At any instant, Eq. (2.5.7) is satisfied. The virtual velocity and its
time derivative are, then, independent. Moreover, the last three terms of
Eq. (2.5.7) (those depending on the "virtual acceleration") are equivalent
to Eq. (2.2.35). Hence, the principle of the rate of virtual power may be

obtained in its concise form.
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For further classifications, the total derivative of the stress components

will be represented by Jaumann derivative, Eq. (2.4.14), namely

ij J i)
dgt - < gt + mi okJ + wJ aik (2.5.9)

vk K

Let the following integrals be defined
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Then, substitutions in Eq. (2.5.8) yleld

a J J
df [, dT

I=1I+1,°+ I, J X ijdv * YV O deA (2.5.1.3)
' A

The integral l,, Eq. (2.5.10), is expected to be formally similar to
the "conventional" 1n£egrals of linear elasticity. The integral I,, Eq.
. (2.5.12), is the sole outcome of rigid rotations, and the integral 14, Eq.
(2.5.11), is required for completeness.

It is obvious that further manipulations on Eq. (2.5.8), especially

the use of Gauss' theorem, lead to the field equations and associated
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boundary conditions. However, the integral form is quite satisfactory for
the utilization of the finite element method. Further inspection of Eq.
(2.5.8) should reveal the resemblance and the differences to the integral
incremental principles presented by Hibbitt et al52 and numerous successors.
Their scope 1s quite different (the Piola~Kirchhoff stress tensor) and
their formulation contains several simplifications.

2.6 Concluding Remarks

The formulations of this section focus upon tensor rate operators
associated with continuum mechanics. Tensor definitions and corollaries
are compiled. The deformation rates and related topics regarding the
kinematics of space are presented. Compatibility of deformation is
elaborated on as an outcome of the curvature of space.

Beside the intrinsic rates of change, total (time) derivatives and
partial derivatives of an arbitrary tensor are presented. The material
syétem of coordinates is useful for applications, the spatial is favorable
for reference, their correlations are highlighted by the above mentioned
rates. Last but not least, the error—-prone rate of a gradient is presented
and proved to differ from the gradient of a rate.

As a consequence of these formulations, various tensor equations
(e.g., equilibrium of elastic solids) can be differen£1al (in time) as all
tools are available.

However, the validity of the tensor formulations of this section is
restricted. As the time derivatives of the transformation tensor, Egs.
(2.3.11) and (2.3.12), are elaborated upon,'the existence of their inverse
tensor, Eq. (2.2.24) is assumed. Hence, all cases where the inverse

transformation tensor cannot be established are outside the scope of the
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above mentioned rate operators. These are-the cases where the
dimensionality of the material coordihates is less ihan that of the spatial.
For instance, unidimensional (arches, beams) or bidimensional (shells,
plates) material system of coordinates. Then the various curvature
components ought to be considered. The conventional curvatures (namely -
radii of tangent or normal circles) have to be accompanied by total
curvatures, expressing the intrinsic properties. Rate operators for these

values must be taken into account in an orderly fashion.
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3. CONSTITUTIVE EQUATIONS

3.1 Introduction

In Section 2, the equations, necessary for the precise treatment of
constitutive equations, were presented. The present section contains a
development of a three-dimensional theory which describes the incremental
(rate) behavior of an elasto~thermo-viscoplastic continuum, in the presence
of finite strain. Such a theory forms the necessary foundation for further
developments of approximate theories for special structures (beams, plates,
shells).

3.2 Incremental Theory of Plasticity

The first formulations of incremental elasto-~plastic constitutive
equations have been by given St, Venant (1870), Levy (1870), Von Mises
(1913), Prandtl (1925) and Reuss (1930). These investigators have
formulated various plasticity theories, in a style similar to that of the
linear theory of elasticity, and ignored some important points, such as the
correct stress rate and the difference between Lagrangenian coordinates and
Eulerian coordinates in large deformations. A good historical review and
additional details may be found in Refs. 53-54. It should be noted that
these works form the basis of what might be called "an engineering theory
of plasticity" and many works, books and researches rely upon them.

The recent years brought a need for accurate solutions of
elasto-plastic problems with large deformations. It became clear that the
classical elasto-plastic theories, mentioned above are not sufficient and
it is necessary to give a more exact formulation of the constitutive
equations. Three main research directions have been developed: The first
direction begins with the works of Hi1117,55. 1In this approach the elastic

increment, which appears in the constitutive equations, is derived from a
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finite elastic law. For that purpose a finite elastic energy function
(potential) must be defined together with a finite elastic strain.

A second research direction has been suggested by Sedov38 and
independently by Green and Naghd156. The elasto-plastic constitutive
equations are based on thermodynamic considerations. The concepts of
finite strain and a potential are also used in these works. The
formulations are general and have not been applied to particular problems.

The third research direction is not restricted to the theory of
plasticity. Some thirty years ago new type of materials have been defined
by Truesdell57-60,  the hypoelastic materials. The constitutive equatlions
of these materials relate the stress rate with the strain rate. Some
authors have shown that the hypoelastic definition includes, as special
cases, various forms of plastice 1aws61'6". Detaliled reviews on
hypoelasticity are given in Refs. 39 and 65.

The classical incremental theories of plasticity make use of an
initial yield condition, a hardening rule, and a flow rule in
characterizing the strain-hardening response of a material. Although these
classical theories continue to be utilized extensively in finite element
computer programs, this may be true only because more suitable models have
not yet been developed.

Comparison of the models with experimental results indicates
relatively good agreement in uniaxial cases under simple loading
conditions. However, for biaxial and triaxial cases and situations where
_ the loading is eyclic, when creep and plasticity interact, and when the
strain rates are high, the results are often in disagreement with
experiment.

The two most widely used yield conditions are the Tresca (maximum

shear stress) and von Mises (J, theory) conditions. For isotropic metals,
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the von Mises yield condition generally provides a better description of
initial yielding than does the Tresca condition. However, for rocks and
soils, the Tresca condition is often used. Other yield conditions have
been proposed, however, these have not found wide use because of their
mathematical complexity.

A flow rule is used to separate the total strain increment into
elastic and plastic components., The most generally accepted flow rule,
termed the normality condition, states that as the stress state of a
material point comes into contact with and plierces the materiai's yield
surface, the resulting plastic strain increment is along the outward normal
to the yield surface at the point of penetration.

The hardening rule provides a description of the changing size and
shape of the subsequent yield surface, during plastic flow. In addition to
simple expansion and/or translation, experimental evidence has shown that
subsequent yield surfaces may exhibit corners, general distorsion, variou.s
Bauschinger effects, and dependence on prior cyclic history, strain rate,
temperature and hold time, to mention only a few parameter‘366. For
simplicity, most finite element programs make use of hardening rules which
account only for expansion and/or translation of the yield surface.

The classical isotropic hardening rule postulates that the yield
surface expands uniformly during plastic deformation. 1In its simplest form
wherein one assumes the von Mises yield condition and associated flow rule,
the rate of strain hardening may be obtained by relating a value of
.equivalent total plastic strain té a point on a uniaxial stress-strain
curve, so that a simple tensile test is all that is necessary to determine

the hardening rule parameters. The simplicity of applying the isotropic
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hardeniné rule has made it very popular in finite element plasticity
analysis.

In contrast, the kinematic hardening model of Prager—Ziegler67
proposes that the yield surface translates as a rigid shape during plastic
flow; the direction of translation being‘given by a vector connecting the
current center of the yield surface and the current stress state. This
gives rise to an idéal Bauschinger effect in which the reverse yield stress
is lower by an amount of stress equal to the corresponding prior straln
hardening.

The Besseling-White (mechanical sublayer) model68 makes use of a
superposition of elastic~perfectly plastic stress states, 1In order to
approximate strain hardening behavior. This model is often idealized
mechanically as a parallel arrangement of elastic-perfectly plastic layers,
whose yield stresses are adjusted to duplicate a plece-wise linearization
of the uniaxial stress-strain curve (the number of layers being equal to
the number of points selected on the stress-strain curve). Like the
kinematic model, the mechanical éublayer model predicts a rigid translation
of the yield surface.

The hardening model proposed by Mroz69 employs.the concept of a field
of surfaces of constant work hardening moduli. Each point of a plece-wise
linear uniaxial stress-strain curve is represented in stress space by a
surface geometrically similar to the initial yleld surface but of different
size. The yield surface is assumed to expand and translate within fhis
. field, contacting and pushing each surface, along with it, as each is
encountered.

Kriegb9 proposed a two surface plasticity model, where the yield

surface translates and expands within an enclosing n1imit surface", which
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also is allowed to translate and expand independently of the yield.. The
hardening modulus is then assumed to be a function of the distance between
the two surfaces at the loading point. Another model is the piecewise
linear strain hardening theory of Hodge?Q, which makes use of a yield
polygon.

As experimental evidence points out, isotropic and kinematic hardening
tend to b;acket actual material response in many cases and, for this
reason, a number of combined isotropic-kinematic models have been phoposed.
Most models are based on a constant ratio of expansion to translation,
although some results have been reported for a variable ratio based on
accumulated plastic strain’!-

3.3 Fundamental Assumptions

In the treatment of elastic-plastic or elastic-viscoplastic
deformations, we have to distinguish between the description as a
thermo-mechanical process and the corresponding one by means of
thermodynamic state equations, It is sometimes assumed that in the case of
process which proceeds through non-equilibrium states, it is fundamentally
necessary to start with a description of the process!9,37,72,
Alternatively, it has been proposed that one might assume local equilibrium
for the elements of a body and therefore describe the state of the
elements, in general, by state equations73’75. The consequences of
adopting these two approaches become particularly clear when considgring
the influence of entropy. In the description of the process, entropy is a
. derived quantity.and in principle we can proceed without introducing it.
In the description by state equations it is, on the contrary, a necessary
state value, which, at least in principle, can be immediately determined.

When restricting ourselves to homogeneous, quasi-statical thermomechanical
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‘processes, the description by state equations can be viewed as equivalent
to that by processes73-76. The controversial issues will, thus, not be
discussed further.

We are dealing with large, non-isothermal deformation of seolid
polycrystalline bodies within the frame of classical continuum mechanics
and thermodynamics. A phenomenological theory of such coupled
thermo~mechanical processes can be based on a material model including four
different elements.?7,78

a) An elastic (or viscoelastic) element representing the reversible
thermo-mechanical processes governed by thermodynamical state
eguations;

b) An element reflecting certain thermo-mechanical processes which
lead to changes of the internal material structure, independent of
plastic yield and thermally activéted creep;

¢) A viscoplastic (plastic) element rendering also certain changes of
the accompanying constrained equilibrium state; and

‘d) An element representing thermally activated creep and relaxation
phenomena, which also may be cohnected.with corresponding changes
of the internal material structure.

Within the frame of the intended phenomenological theory, it is
assumed that the respective thermodynamical state of each element is
uniquely defined by the actual values of a finite set of external and
internal state variables. Moreover, this enables one to introduce an
. accompanying fictitious state of constrained the?modynamical equilibrium,
by means of a fictitious reversible prbcess during which the internal
variables are kept constant. This leads to a unique definition of

reversible deformations77'78.
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Viscoplastic deformations are attributed to slip processes in certain
crystal planes. These slip processes are based essentially on the notion
of lattice defects. Roughly, we may distinguish local (bounded) processes
restricted to the single grains (but occuring at the same time in all
concerned grains) and global processes running through the whole body. The
local processes comprehend the generalization and dissolution of lattice
defects, the piling up of lattice defects at grain boundaries, etc. They
are very sensitive to changes of the stress state, 1.e. to the stress
increments. The work involved in these local processes 1s relatively small
and mainly non—disgipativg. The global processes are mainly dissipative
and essentially governed by the actual stress state. The initiation and
continuation of global processes, however, is.always coupled with local
processes,

3.4 Kinematic Considerations

Basic to most of the postulated models of large elastic-plastic
deformation behavior is the additive decomposition79 of dr's and EAB (see

Section 2.2.2) into elastic and plastic parts;

(3.4.1)

The validity of this additive decomposition in the case of finite
elastic~plastic strains has been questioned by Lee and his
asssoc:iat‘,e.~329-80'82 Lee's?29 approach is based on the total purely elastic
unloading from the current state to an intermediate unstressed plastically
deformed configuration, without any r'ever;se or other kind of plastic flow.

The major point in his theory is to decouple the total elastically induced
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distortion and measure it from a relaxed unstressed state, which is only
plastically deformed from the initial to the intermediate configuration.
Accordintly, the deformation gradient F (our transformation tensor in

Section 2) is decomposed in the multiplicative form,

(3.4.2)

"
[}

[ ie s I o)

e ]

P
where F transforms a line element from the initial configuration to the

E
intermediate configuration, and F from the latter to the current

configuration. The intermediate configuration is chosen in such a way 80

P
that F is unaffected by the presence of rigid body motion. The deformation

rate tensors, dgp and dpg are then defined. After some manipulations, Lee

shows the following relation:

E E P E E P E

-1 -1
drs = drs * Frk dkl 1:‘ls s * E?r'k wkl Fls (3.4.3)

where the subscript s denotes the symmetric parts. Generalization of Lee's
theory for anisotropic elasticity was given by Mande183.

Lee's theory is based on the assumption that the elastic law does not
change with the history of deformation and hence a total elastic unloading
can take place, However, it has been shownsu that after a fair amount of
plastic flow has taken place, reverse ‘plastic deformation will result soon
upon unloading, even for small strains. Therefore, a total elastic

unloading cannot have any physical significance. In view of this, the
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theory of Lee appears as a special case of the theory of Green and Naghd185.
Although not as'general as the theory of Green and Naghdi, Lee's theory, on
the other hand, has the advantage of being more easily fitted with the
physical property of invariance of elasticity with respect to plastic
deformation. Mandel183 in pérticular has pointed out that the Green-Naghdil
theory is not convenient if one wants to include anisotropic elasticity
effects. All this can be avoided by the use of the convected coordinates
as proposed by Sedov38 and Lehmann86, The formulation presented herein
will follow the work of Lehmann.

All quantities from here on will be related to the metric of the

coordinate system ua in the deformed state. Hence,

o OGB
fv =G Gsv
(3.4.4)
o}
-1,0 oB
(r )Y G GBY
0
where the supercribed o relates to the initial state at time t. The

deformation rate is,

o _y 0B ¢ - =) sBa
dY Y, G GBY A GYB G

(3.4.7)

._and the (-) stands for the material derivative.
The deformation gradient may be split into its elastic and its plastic

components in the following manner:
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fY = G GBT + G GGY
\—y—-J w
P0 ET
Fr © I
(£7H?

\”'J Rf—) (3.4.6)

The use of capital greek subscripts and superscripts (Gsr) denotes

parameters belonging to a fictitious intermediate state, defined by a
fictitious reversible process with frozen internal variables, which 1is in
general incompatible. The circumstance of the non-continuous configuration
in the unstressed state has been observed by Sedov38, who points out that
convected coordinates, as used herein, become non-Euclidean in this

configuration.

fictitions referencs state
(incompatible)

initial stats ’

ﬁ:muu reversible precess
| {internal verishlas frozen)

real therme-mechanical
process

actvalstate

Fig. 3.1 - Definition of Fictious Reference State
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This multiplicative splitting of the metric change in the convected
coordinates leads to an additive splitting of the deformation rate

according to

=1y6 (21T “1ya (218 Cr
dy = sym (e C)0 (£) b+ sym u{(e )5 (£)°) £} =
E P
T T S I
= sym % {(£7)% e0b - sym Bf (e ) (£7) 5 £} - (3.4.7)
EO Pa
- dy + d,

3.5 Elastic Deformations

The present study is concerned with the structure of the constitutive
relation of an elastic~viscoplastic (elastic-plastic) medium. The term
elastic-viscoplastic means that the viscosity does not intervene in the
elastic domain whose boundary, in particular, is well defined at every
stage of the deformation. For simplicity we further assume that the
thermo— elastic behavior of the body 1is isotropic and unaffected by
inelastic deformation Iin the sense that the material
constants characterizing the thermo—elastic behavior are independent of
inelastic deformation.

It is convenient to work with the Kirchhoff stress tensor, t, in the

current configuration, obtained from the Cauchy stress tensor by scaling

(3.5.1)
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where p denotes the current mass density, po the mass density in the

initial state, and J the absolute determinant of the deformation gradient

at the current configuration.

The co-rotational stress rate also referred to as Jauman stress rate

(see Section 2) will be

g :
o] *Q o Y _ Y a
OB = O.B + dY OB d8 oY

(3.5.2)
v
a *a e Y _ Y a
TB = TB + dY TB d8 Ty

From Eq. (3.5.1), the following relations between the various rates of

Kirchoff stress and Caushy stress are obtained

(3.5.3)

If a rate constitutive law is postulated between é and d in finite
inelasticity theories, then a potential does not exist, which is necessary

in the variational or thermodynamics-based formulation of the problem. The

basic difficulty lies with the dYY—term. This is remedied by postulating a

constitutive law between i and d.

Thus, we can obtain a unique relation between the elastic deformations

E
' represented by f: , the Kirchhoff stresses, T:, and the temperature,

185,86,
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E E E E
£2 = £9(<2,1) : 2 - Tg(rg, T), T = 1(3, £8) (3.5.4)

Y YHoy? Y §
This function may be transformed into an incremental relation by
differentiation with respect to time. This leads to a general expression

of the form

E

E
] o o a
dY - dy {Ty, T

v T T, G

o 9y} (3.5.5)

From Eq. (3.5.4), we see that the total deformation rate enters the
incremental form of the thermo- elastic stress-strain relations.
Therefore, the thermo-elastic deformation is not independent of the
inelastic deformation occurring at the same time. This follows from the
fact that in the integrated form of the thermo-elastic stress-strain
relations, Eq. (3.5.4), the stresses and the strains are referred to the
deformed state of the body.

In view of the present discussion and the discussion in the previous
subsections, the hyper- elastic behavior described by Eqs. (3.5.4) and
(3.5.5) will be replaced by a hypoelastic law; The hypoelastic law is a
path-dependent material law, since it cannot be expressed in terms of an
initial and a final state; it depends on the path connecting these states.
Otherwise, if we did not make such a change, it would be necessary to
retain the finite deformation measure in the constitutive law. For small
elastic strains, there is practically no difference between hypoelastic and
hyperelastic laws, as shown, for example, by Lehmann86,

The above could be illustrated by the following example. From the

‘rrequently used elastic stress-strain relation

E
G _ y[s0 _ (s~ 1Oy _
ey = %leg - (£ )]}

e Al A IR G S F (3.5.6)



Eu 1 EtS .. Q \ Ea *B . Ea
6§ = =g [symley (%] - 755 (b + ot 1y (3.5.7)
which may be replaced by
Eu R va v VB a . O LR ]
d.y = =G {*ry " Ty T8 67} + aT GY + aT GY (3.5.8)
We assume that inelastic deformation occurs if and only if
a
P13, Ty Kyewy aShenn, ASS,L00) = 0
and (3.5.9)
v
oF a oF »
3% Ty * aT T>0
Y
for elastic~plastic material,
or
] (] o
(12, T, Kyeney adhene, ASE,L0) > 0 (3.5.10)

for an elastic-viscoplastic material.

The function F represents the yield condition which bounds the domain
of pure thermo-elastic behavior, in the ten—dimensional space of stress and
temperature. The inequality, given by the second of Eqs. (3.5.9), is the
loading condition. The actual form of the yleld condition for a given
material is determined by a set of so-called internal parameters, which are
scalars and/or tensors of even order. The current values of the internal

paramters depend on the initial state of the material and the history of

the thermo-mechanical process.

3.6 Thermodynamic Considerations
Restricting ourselveé to elementary processes, we need not analyze
whether the applied heat arises from heat conduction or from heat sources.

For the same reason it is not necessary, in our case, to introduce the
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temperature gradient in addition to the temperature, and the body forces in

addition to the stresses.

The first law states, under our simplifying assumptions, that the rate

of the specific internal energy, 0, is the sum of the rates of the specific

mechanical work, W, and the specific applied heat, é:

U- ﬁ# a (3.6.1)

The rate of mechanical work is given by

. 1 a Y
W= -To' ‘l’Y dc (3.6.2)

and may be split into an elastic and an inelastic part according to Eq.

(3.4.7),
E P E I
. Y . *
e M M (3.6.3)
Po Po :
D
The rate of inelastic work must also be split into a part, W, which is

S
dissipated at once, and into another part W, which represents changes in

the internal state. Thus,

oy of 2 0
W-—p—‘rydu-w*'w (3.6.")
o
D
Only W enters the entropy production
D
IS =q+ W (3.6.5)

The second law of thermodynamies requires

? -
W20 (3.6.6)

We use as thermodynamic state variables the elastic strain,
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E
represented by fs, the absolute temperature T, and a number of other

internal state variables (k,...,o:,..., Asg...), which may be scalars and

E
tensors of even order. The choice of fg and T as state variables is based

on the fact that in pure thermo-elastic deformations, both quantities form
a suitable set of thermodynamic state variables. The plastic strain and
the total strain are unsuitable as state variables because, in general,
they do not uniquely define the state of the material. A conflicting point
of view has been expressed in Refs. 87-89. The remaining state variables
are added for the sake of the description of the changes of the internal
structure of the materlial.
The specific free energy (Helmholtz function), ¢ , glven by
6 =U-Ts (3.6.7)

must be a unique function of the thermodynamic state variables

E

¢ = o]

2, T, k, of 2°%...) (3.6.8)

yrorer By
Since the elastic part of the deformation, according to our assumptions,
does not depend on the plastic deformation, we may divide the free energy

into two different components, as

E Ea S o aB )
o = ofty, T) + ofT, KyvoosOysenerAygsens) (3.6.9)
. E
where the first component, ¢ ,refers to the elastic deformation and the

S
second, ¢ , to the changes of the internal state.

From Eqs. (3.6.1), (3.6.3), (3.6.4), (3.6.5) and (3.6.7) we derive
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* » g %
¢ = =sT + W+ W (3.6.10)
Also, from (3.6.9), we obtain
E 5 E S
6 - 90 ra . 3!¢ + ¢! i
5¢® Y aT
Y
S S v S
30 - % o 36 0B
toe ke 2.0 Gyt ..t _aA"ﬂ AYG + ... (3.6.11)
Cy Ys

By comparison of these last two equations, Egs.(3.6.10) and (3.6.11), we

may conclude that

E S
_ 3£¢ + ¢2
S T
s S S
S v
. 22 . ¢ o ¢ aof
W T ...+——a°ay* +_3A°8 A” (3.6.12)
Oy ¥$
E
E
A 8 3
Te " Po Iy E_
oy

For irreversible processes, this scheme of descriptidh has to be
completed by some statements about the dependence of entropy production on
the thermo—mechanical process. Under our assumption we need only deal with
entropy production by dissipated mechanical work, in connection with
‘inelastic deformation. Thus, we assume, in general

aB Y

$
vs To % >0 (3.6.13)

D
W=

where



aB aB Eo o aB

Crs = Cys(fy, Ty KyensOyyens AYG) | (3.6.14)
Eqs. (3.6.12) and (3.6.13) are the governing equations for non-isothermal,
elastic-inelastic elementary processes. The specific free energy ¢, which

determines the non-disspated work of the thermo- mechanical process, and

the quantity ng , which governs the entropy production, must be specified

according to the material behavior.

3.7 Elastic-Plastic Model

Elementary processes of elastic-plastic bodies may be considered as a
sequence of equilibrium states, at least as long as the rate of deformation
is moderate, so that the specific free energy is well defined in each state
of the processes. We consider a simple example of isotropic behavior. In
this case, the state of hardening can be described in the first
approximation by a scalar state variable (beside the temperature). In
order to simplify more, we assume here that the hardening is independent of
temperature. Then the free energy can be written in the form:

Ec > E EO S 5
¢[f79 T, h J - ¢(fvaJ + d’[h ) (3-7.1)

For the work during hardening it follows that:

S .
S do 2 %
Wa 3z P70
dh

' (3.7.2)

s
3 - o(n?) - :(hi)

Provided now that there exists a uniquely defined relation (depending only

D S
on h2) between the dissipated energy W and the work during W - i.e.
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D S S
W= c(n?) o (n?) = c(nd) o(n?) (3.7.3)
then we have
P S D S
e i we S {1 c(0®)] o(n)} B2
dh
(3.7.4)

)
wn

S
we [1+e(n?)] o(n?) = [1 + o(n?)] o(n)

P S D
The plastic work, W, as well as its parts W and W can, on the assumption
made here, be represented as functions of the state variable n2,
We can introduce a yleld condition of the form,

Qa

F(Ty, kz)

= 0, (3.7.5)
where k2 is here a parameter characterizing the hardening. Since, on the

other hand, the boundary of elastic behavior in the stress space can depend

only on the state variable k2, then k2 is a function of h2. or

P
K% = kz(hz) - kz(W) (3.7.6)

holds. If the hardening is isotropic, in a more restrictive meaning, the
yield condition does not change its shape during plastic deformations, we
have to put

2

) a £(«2) - % = 0 (3.7.7)

F(3, k
Plastic deformation occurs if Eq. (3.7.7) holds and the loading condition
is satisfied at the same time - i.e.,

v

af o
Ty

o
BTY

>0 (3.7.8)

S
We can use the state variable h2, for instance, by letting h2 = W,

Then it follows from Eq. (3.7.2) that
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6(n) = n? (3.7.9)
Starting from the initial state hg = 0, we get from Eq. (7.3.4),
P 2 2
W=1[14+e¢cn)]n (3.7.10)

P
On the other hand, W can be represented from the yield condition, Eq.

(3.7.7), as a functin of k2:

P P,
W= W(k®) (3.7.11)

From Eqs. (3.7.10) and (3.7.11) we can determine:
n2 = h2(k2) (3.7.12)

In the case of linear hardening with

P
2 2
kK~ = ko + 2B po W _ (3.7.13)
we have
P .
1 2 _ 2 ‘
W= T, (k ko] (3.7.14)

By putting c(hz) = const. = ¢, thus assuming a constant relation between

work of hardening and dissipated energy, it finally follows that

2 2

s K2 -

o(n?) = n% = ——2 (3.7.15)
2Bp°(1+c)

For anistropic behavior and again, provided the plastic deformations
are independent of temperature, the state equation for the free energy may

be assumed approximately i.e. in the following form:
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aB
o AS®) (3.7.16)

3.8 Elastic-Viscoplastic Model

Thermo-mechanical processes in elastic— viscoplastic bodies cannot be
considered as a sequence of equilibrium states, even in the case of the
elementary processes, considered here. Elastlic-viscoplastic deformations
are associated with non-equilibrium states. One consequence of this fact
is that we may get a continuation of a process without any change in the
independent proces variables. This occurs, for example, in the case of
creep with constant stress and temperature or in the case of an adiabatié
stress relaxation under constant strain. In such cases, the body moves
from a non-equilibrium state to an equilibrium state.

In order to establish the constitutive relations for
elastic-viscoplastic bodies, which in the limiting case becoming
elastic-inviscidly plastic, we adopt the usual assumption that the
stresses, which produce the inelastic deformation, may be expressed as the

sum of the so-called athermal or inviscid stresses, ?: , and the viscous
%*

a
overstresses 17:

o _=u, * -0 a_ o
Ty = Tyt Ty Ty (TY ry) . (3.8.1)

This assumption, by no means, detracts from the "unified" concept. The
rate-independent limit of visco-plastic constitutive relation was recently
discussed by Travnicek and Kratochvil®0, Hence, the total work rate can be

partitioned in the following way:

E P v
. . . E P
ﬁ-w+w+w-‘—r$d:+ ! ?‘;d:
“—— % Py
I ‘
W ‘ (3.8.2)
* P
*Lrsdy
Po a
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The viscous part of the work is completely dissipated. Thus, we may write

W=W (3.8.3)

Regarding the plastic work, we have already stated that one part is used
for changing the internal state and only the femaining part can be

considered to be dissipated. Therefore, we must write

P S D
b‘d = w + w (3.8.4)
So, we finally obtain
IR
w-W+w+w;w (3.8.5)
W

We have assumed that the changes of the internal state of the material
can be regarded as a sequence of equilibrium states. Then, the specific
energy is well-defined in each state of the process and we may take the

usual overall statement concerning the specific free energy. In so doing,

S
however, we must be aware of the fact that into the part, W, of the plastic
P - -
work rate, W, only the athermal stresses Ty enter, since only these

stresses are involved in the plastic mechanism. For the same reason, we

can only 1nt.r'oduce_the athermal stresses:: into the statement concerning
Dp
the dissipated plastic work W. On the other hand, we have to add the

Dy

D

°P
dissipated viscous work W to W in order to obtain the total rate of
dissipation. The different mechanisnms for determining the total

dissipation and their coupling have been discussed by Per‘zyna91 .

We now consider an example in which the specific free energy has the

following form
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E s
£2, T) + ofT, K, )

E
o =0 (£,

(3.8.5)
E Ea . Y

= ¢(ry, T)+ k+ £(T) + hay o
In this equation h denotes a constant with the dimension of a specific

energy like the variable k and the function f(T).

Furthermore, we assume that the dissipation 1is given by

D
.p P
1 — ay,Y
W = -—p—o E(Ty [o] po h Uy)do
(3.8.6)
Dv ;
y 1 o —oy by
W = _3; (TY - TY) da
where £ < 1 and ¢ denote constants. This leads to
D Dp Dv P I
L] L] * o PY *
W=W +W =(E~1)W=-E ch a$ a + W (3.8.7)
Hence, we obtain
S 1 D P
W=W-W=(1-¢)Wsgechal d; (3.8.8)
On the other hand from Eq. (3.6.12) and (3.8.5) we have
S
. . . vy
W=k+2noy o ‘ (3.8.9)
Eqs. (3.8.8) and (3.8.9) are compatible, for instance, if we put
P
k=(1=-¢)w (3.8.10)
and
v P
Y 1 Y
o, Ve & d° (3.8.11)

P
From Eq. (3.8.10) it follows that, in our case, the plastic work, W, is
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equivalent to the thermodynamic state variable k. This is still true if we

take £ as a function of k. But it does not hold in the general case when §

also depends on the other state variables T and o:. Eq. (3.8.11) shows that

only in a very special case, a very unrealistic one, the state, variables

03 are equivalent to the plastic deformation.
From the thermodynamical considerations, it follows then that we may

introduce the quantities k and b: , defined by Eqs. (3.8.10) and (3.8.11),

P
or any other equivalent set (W, cpoha:), as internal variables into the

corresponding constitutive equations of the process description.

The constitutive equations themselves are not yet determined
completely by Eqs. (3.8.5), (3.8.6), (3.8.10) and (3.8.11). These
equations only give the restrictive frame for the formulation of the
constitutive equations. We may derive a complete set of constitutive
equations, which is compatible with this frame, by the following further
assumptions:

a) the yield condition is of the form,

p
F= (T -cop,h oy (8% - ¢ p, hoy) - &(W,T) = 0 (3.8.12)

where E: denotes the deviator of the Kirchhoff stresses ;3 '
b) the plastic deformation obeys the so-called normality rule,

P
ab = i ¢, (3.8.13)
=

c¢) the relations between the viscous stresses and the inelastic deformation

rate are of the form,

P * .
a 1 o 1 o _
dY = >n tY = g (ty ty) (3.8.14)

d) the quantities £ and c are constant.

We can elimnate the athermal stresses ;: {which are not state
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variables) from the equations of evolution by considering that the
inelastic deformation can be expressed in two different ways. In one, the
plastic mechanism is considered, and in the second, the viscous mechanism

is considered. From Eq. (3.8.12) we then obtain,

A

P
dc

- 2i('€$ -co, hag) (3.8.15)

while from Eq. (3.8.14) we have

Pa 1 V]
ag = —= [ty - ty)
(3.8.16)
1 o _ o _ (7O _ o]
= 55 ltY (] Py héy (tY cope, h cy)}
P
By comparing these equations for d: we get
(t° -cp haa) [ta -cop haal
. 1 Y o Y Y o Yy _
A i 1 : ) 1} (3.8.17)

Following the course of the process in each state, the internal parameters
P

W and a: and therefore also g2 = g2(W, u:) are known. Thus, we may

calculate » from Eq. (3.8.17), and then all the other needed quantities

P
—a V]
such as tY and dy.

This procedure fails at the point of transition from the elastic

domain to elastic-viscoplastic deformation domain, since in this instant

P
) t: = E: and therefore A as well as d:' become zero. But in this case we

P
v
may calculate d: from the following considerations: From Eq. (3.8.14) we

P
obtain, because of d: = 0 and t: = E: ’
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2
o _ oy 7Y _ 98 & _
2[ty cp h ay) t, = T=0 (3.8.18)

On the other hand, we derive from Egs. (3.8.14) and (3.8.15), observing

. a -
that » = 0 and tY = ty,

v
b v
a T, _ o _ o
ay = 2Ju(tY co h uy] = — | to) (3.8.19)

v

From Eqs. (3.8.19), after multiplying by (t: - cpoh u;), we obtain

v
v
R S ¥ ¥
23 & - Tn(t: - E‘y’) (1:m - cph cxa] (3.8.20)

Together with Eq. (3.8.18) this leads to

- 1

SnE2

2
{z(tg - cp h as) ; -2 4) (3.8.21)

v v

Having the value of ), we may calculate d: from Eq. (3.8.19), E: from Eq.

(3.8.19), etc.

3.9 Some Complementary Remarks

Many thermodynamic considerations of non- isothermal,
.elastic-viscoplastic deformations refer essentially to the general
fundamentals, which must be observed in describing such phenomena as
thermo-mechanical processes, and then discuss in particular which

restrictions follow from the second law of thermodynamics. Only a few
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papers attempt to describe completely such processes by state equations.
Most of these papers introduce plastic strains as thermodynamic state
variables. But one may conclude from the consideration of the phenomena in
the crystal lattice (dislocations, for example, which have completely
passed through the crystal produce plastic strains but no changes of
state), as well as from phenomenological observations (different states of
hardening can belong to the same plastic strains), that plastic strains in
general cannot be regarded as state variables, Furthermore, all these
papers consider the plastic work as completely dissipated. This, however,
is in contradiction with experimental results, from which it emerges that
one part of plastic work is used for producing states of residual stresses
in the lattice, which, when phenomenologically considered, cause hardening.
The results, in the work presented here, can be extended to more
complex constitutive equations by introducing more internal pgrameters or
state variables, respectively. We may extend our approach to more general,

anisotropic hardening materials by assuming (see Eq. (3.8.5)), for example,

that
E E0 S o aB
¢ = ¢ (fy, T) + ¢(T, k, Oy AYG)
(3.9.1)
EE )
a . a8 Y 6
Cm o T) ¢ kv £(T) ¢ Ajc o ag-

Also, it may be more advantageous to replace the assumption in Egq.

(3.8.13) for the plastic deformation rate by

P ' v

o s+ OF af &8

(:l.Y A —;:; + BYG TB . (3.9.2)
Y

This form of this model appears to be more suitable for representing some
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experimental result; in which second order effects and some deviations from
the normality rule have been observed. Sometimes the normality rule is
considered as a fundamental law based on an entropy production principle.
But we should keep in mind that, since not all of the plastic work is
dissipated, we cannot expect the total plastic deformation rate to obey the
theory of plastice potential, even though the mentioned principles of

entropy production are correct.
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4, APPLICATION TO PROBLEMS IN EXTENSION AND SHEAR

4,1 Introduction

One of the most challenging aspects of finite strain formulations is
to locate an analytical solutions with which to compare a proposed
formulation. Typically, as a first problem, a large strain uniaxial test
case is analyzed. The uniaxial tensile test is a common and simple way to
characterize the stress-strain relation for a given material, since the
tensor components used in the constitutive relation will have to be related
to this uniaxial test,

In Subsection 4,3 an example how the general constitutive relations
developed in Secﬁion 3 can be applied to a particular material is shown.
This material law is applied for all the other examples.

The case considered in Subsection 4.4 examines the rate-dependent
plastic response to a deformation history that includes segments of
loading, unloading, and reloading, each occurring at verying strain
amplitudes, for a bar. These are surely important problems to be
considered; however, they only represent a partial test because the
principal stretch directions remain constant. Finally, a problem which was
discussed by Nagtegaal and de Jong 92 and others 93 as a problem which
demonstrates limitations of the constitutive models in many finite strain
formulations is the simple shear problem. This problem is solved as the

last example.
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4.2 - Uniaxial Irrotational Deformations

The uniaxial tensile test is a common and simple way to characterize
the stress—strain relation for a given material. Since the tensor
components used in the constitutive relation will have to be related to
this uniaxial test, and also to gain a physical understanding of the
quantities involved in the analysis, it is both useful and instructive to
express the tensor quantities previously discussed in terms of the uniaxial
tension test variables. A homogeneous, uniaxial, irrotational deformation
will be considered here as a first example.

If the original length of the bar is %, and its present length is 2,

then, the transformation between the fix coordinate system and the material

coordinate system is

x' = -—,’f— u’ (4.2.1)
o
L
u1 - —% x1 (4,2.2)
and the metric is
0 o
11 11
811 -g = G11 - G = 1 (11.2.3)
12 102
G,, = — G,, = —= (4.2.4)
11 12 1 22

. from Eq. (3.4.4) we find

—
N

(4.2.5)

[ ]
ol

and
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22
(£71)] = =2 (4.2.6)
vV =v, = -%}- ) (4.2.7)

(4.2.8)

<
L}

Ld Rt
<
[}
-

The components of the deformation rate in the material system are

then,

(4.2.9)

Q.
]
| o

It 1s worth while to notice that the material rate of a-logarithmic strain
1s equal to the mixed components of the rate of deformation tensor.

The unit normal vectors to the deformed and undeformed aréa§ are one
and the same unit vector directed along the bar axis, since the deformation

is uniaxial and irrotational. Therefore,

v o= fg v, = —— (4.2.10)

The force transmitted across the cross—sectional area of the bar is dP

1 2
dP = - dpP dP1 = —E; dp (4.2.11)

The corresponding traction vector components are:

L

1 P 0 | L
A 2 T1 i (4.2.12)
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The components of the Cauchy stress tensor in the material system are

obtained as:

o o) o
2
2 L
1 oP p P "o
> 1 o < 3 (4.2.13)
L, o o
2 3
o, ..’L_Z%._L_i_%
'3 po ol
o} (o}

and the components of the Kirchhoff stress tensor are:

d.fop P2
1 p A A %
[o] o]
2
n_forto_pt (h.2.18)
p a 12 A° L
LN L L
11 p A 12 Ao 13
[+ [o]

Observe that the uniaxial component 1: is the stress actually computed

in most uniaxial tension test and is also inaccurately labeled some times
as "true stress", since it is usually assumed to be equal to the "true
stress™ because p ~ p, 1s satisfied almost identically for most metals in

the plastic region.

The Jaumann derivative of the components of the Cauchy stress tensor

in the material system is:
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The corotationl (Jauman) rates of the Kirchhoff stress components can be

similarly obtained:

T dat ‘"R T2
(o] (o}
d (P 2
dt[A z)
[o] o}

1, = 4 (B2
1" 22 dt Ao 20
o
As previously noted in Subsection 2.5, the rate of the internal power

can be expressed as a function of the Jauman derivative of Caushy stress

and the rate of deformation tensor as in Eqs. (2.5.10) - (2.5.13).
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4,3 - Example of Constitutive. Relations for an Isotropic Hardening Material

For a carbon steel (45(DIN 1720) in a pure tension test at a moderate

temperature and strain rate, we find the material behavior which is shown

in Fig. 4.19%,

—] 20°C

]
= "] ¢
| o] 200°C
: L~ s
/ /
/
‘
2
tdﬂﬁ
° Y 02 o o as os o7

Fig. 4.1 - Carbon Steel C 45 in Tension

From this we may derive the stress—-strain-temperature relations for loadiné

~in pure tension in the form

g = g(e, T) (4.3.1)

For our purpose it is more useful to write this relation in the form
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= v

_ P c1(T)
o= oW, T) = 5+ o (T) (4.3.2)
c2(T) + W
In our special case we get
- “3; kp
c1(T) = T2.42 36.03 - 10 °T 5
mm
¢, (T) = 7.35 ~ 8.04 - 10737 e, (4.3.3)
mm

0,(T) = 47.41 = 38.9 - 10 37 e,
: mm

with T in °Kk.

We may consider the carbon steel approximately as an isotropic
work—-hardening material obeying the v, Misses~Hill yield condition.
Furthermore, we assume that a constant ratio of 90% of the plastic work is
dissipatéd. With these assumptions we get the following general
process—-description for the material under consideration in this example
(see Section 3),

independent process variables: 2, T

8’

p P
dependent process variables: {a) W or kz(w, T), respectively

o
(v) fB,....
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yield condition:

a P o .Y 2 P
F(Ty, T, W) =t t, - kK*W,T =0,
(4.3.4)
P
P e, (T) W
2 2 1 2
KW, = £ fo (1) + ——]
c2(T) + W
loading condition:
v 2
F o oF = a Y _ 9k«
5 Ty + 37 T= 21:_Y tc 3T T>O0 (4.3.5)
ot
¥
elastic strain rate:
Eu 1 vo v VG o] . Q
dy = T {Ty " TS GY} + oT & (4.3.6)
plastic strain rate:
when Eqs. (4.3.4) and (4.3.5) are fulfilled:
v 2
B .6 ok .
P . 2t t, = —=— T
d: -3 oF 5 B 9T (4.3.7)
ot 2
Y k2 dk
P
oW
otherwise:
Pa
d, = 0 (4.3.8)
rate of plastic work:
P P
) a .Y
w - TY do (,40309)

rate of applied heat (approximation; the exact formulation is given later

in BEq. (4.3.17)):
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p
qQ=cl -¢gW (4.3.10)

with £ = 0.9 = const. ¢ = 465 E%—i (heat capacity)

In the process description the hardening parameter k2 depends uniquely

P
on the plastic work W and the temperature T. This fact leads to the

following approach for the corresponding thermodynamics relations (see
Subsection 3.6) to make sure that the plastic work is equivalent to
thermodynamic state variables:

free energy:

EE S
6 = ¢(f:,T) + h with h = ¢ ; (4.3.11)

entropy production:

D P P
W = E(h) 1: d = E(h) W (4.3.12)

Q «

From this approach and with connection with Eqs. (3.6.4) and (3.6.12), we

get

(4.3.13)
This means, as required,

P
h = h(W) ] (4.3.14)

In our special case, it holds that g(h) = 0.9 = const. Therefore the

S
latent hardening ¢ = h becomes

P P
h=(1~g) W=0.1W (4.3.15)
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From our approach, Eq. (4.3.11), we may also derive for this case, the
exact relation between the rate of applied heat, the time derivative of

temperature and the deformation rates. Using the Egs. (3.6.5) and (3.6.12)

we get
D P v
. . . . ’ 9S o 98 98 ¢
Q+W=q+EW=Ts= T{——E; Lt T h}
oy
2 v 2 2
_ 9" ¢ a, 0 ¢ = 979 ¢
T{ 5 £ o T+ o h} (4.3.16)
ar® 3T
Y
i.e
v
R« 2o 5. 2% °©
arew=-T=5 1+ 5 rg} (4.3.17)
oT a
Y 3 T
Y
In this equation
E
2 E
-7 3—% - ¢(£2, 1) (4.3.18)
aT

E P

represent the heat capacity at constant strain (d: - d°2

y " 0). We may

consider this heat capacity as constant:

E
c(t3, T) = C. (4.3.19)
Furthermore, we know from experimental results that the second term on

" the right-hand side of Eq. (4.3.17) can be neglected in most cases. So we

can replace Eq. (4.3.17) by
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P
q+€EW=cCT (4.3.20)

This is identical to the Eq. (4.3.10) which we used as an approximatin in
the process description.

b, 4 - Uniaxial Cyclic Test

The formulation described in Subsections 4,2 and 4.3 was applied to
the characterization of isothermic T = uoo"k uniaxial cyeclic response to
loading program of variable strain amplitudes at a strain rate of 100 S™!
(Fig. 4.2(a)).

The dotted lines in Fig. 4.2(b) were obtained under the assumption
that the total plastic work was dissipated. Due to the viscid effect, the
rate-dependent stress—strain curves (solid lines) have continuous slopes at
the shifting points. Note that the transient har‘dening'causes the

subcycles not to be closed.

3

001 /

0 005

00 v

-001

—_—t 1 .

Fig. 4.2(a) - Loading (¢ = 100 S71)
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Fig. 4.2(b) - Stress-Strain Response

87



b5 =~ Simple Shear

We take the same material as in subsection 4.3 and consider simple
shear process as shown in Fig. 4.3. We denote this material as material A.

The processes will

. . rn
——a G2
I |
! /
/ /
3 /
/ /
/ / G2
Cn 7/ / Gn
Gr; / /
/ /
/ /
/ /
! . / .
; iy
Cn 93 tany
G2 ‘

Fig. 4.3 - Simple Shear

be carried out, on the one hand, isothermically and, on the other hand,
adiabatically. We find the solution of the problem by numerically
integrating a system of first-order differential equations originating from

the Eq. (4.3.4) - (4,.3.10). 1In tﬁe first case (isothermic process), the

total strain rate d: and the temperature To are given, and in the second
case (adiabatic process) the total strain rate and the vanishing of the

applied heat are prescribed.
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For comparison, we introduce, furthermore, a theoretical material
whose yield condition is unaffected by temperature. This means, for this

material, the hardening parameter k2 is

P
2 2
K- = k (w, To).

In isothermic processes this material (denoted as material B) shows
the same behavior as material A, But in adiabatic processes we have
differences, For material A, the temperature influences the yield
condition as well as the elastic part of deformation. For material B, only
the elastic components of the deformations are changed by temperature.

Regarding this we must distinguish three cases:

(I): isothermic processes with material A or B,
(IIA): adiabatic processes with material A
(hardening rule depending on temperature),
(11B): adiabatic processes with material B
(hardening rule independent of temperature).

The resuls for the shear stresses and the temperature are spown in Fig.
4,4, We see that the differences between the sheaf stresses in the
isothermic and in the adiabatic processes are mainly influenced by the
dependence of the yield condition upon temperature. The differences betwen
the cases (I) and (IIB) are negligible, but not the differences between IIA
and IIB. It should be remarked that in the case (IIA), we get a maximum
shear stress for v = 0,87. So for larger deformation we find in this case
a softening effect due to the increasing temperature. With respect to the
temperature the differences between the adlabatic cases, (IIA) and (IIB),
are rather small, since the differences in the plastic work, in both these

cases, are not so important.
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The second-order effects are more influenced by the temperature than
the first-order effects. This can be see from Fig. 4.5 The effects are
partially changed in the opposite direction (see stress 611). This is due
to the strong influence of the temperature on the elastic deformations. We
may conclude this from the fact, that the differences between the casses
IIA and IIB are less than the differences between I to IIA or IIB,
respectively.

From other experiments, however, we know that the observable
second-order effects cannot be explained by the influence of the elastic
part of the deformation alone. We get more realistic result when we use
stress-atrain relations derived from the Eq. (3.4.2) with a small
correction concerning the theory of plastic potential. 1In this case the
difference between the second-order effects in isothermic and in adiabatic
processes may be slightly less. But in any case, the influence of

temperature on second-order effects is more important than the influence on

first-order effects.
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5. SHELL FORMULATION

5.1 Introduction

A basic framework for nonlinear or buckling analysis of thin shells by
the finite element method is supplied by an incrementation of variational
principles. Most of the nonlinear theories of shells are Lagrangian in
character in that they employ as a reference configuration the undeformed
state of the structure. In the construction of these theories it is common
practice to start with a set of strain measures and strain~displacement
relations (which are usually approximate in some sense), to introduce
conjugate stress quantities, and to then postulate a variational principle
of virtual work in terms of the variables of the theory. The next step is
the incrementation of the principle of virtual work, which introduces
further approximations and inconsistencies into the theory.

A new procedure free from all the above cited limitations for the
analysis of finite deformations, finite rotations, buckling and
post-buckling behavior of arbitrary shaped shells of elastic or inelastic
materials is presented in this Section. This formulation is a complete
true abinito incremental theory.

Subsection 5.2 describes the geometry and the kinematics of a surface.
This formulation is used in the next Subsection which describes the
geometry and the kinematics of the shell. The incremental principle of

virtual power and incremental equations of equilibrium are introducéd in

Subsection 5.4.
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5.2 Geometry and Kinematics of Surface

The development of differentlal geometry of surfaces has been
presented in numerous books, e.g., McConnel [45] and Sokolnikoff [44].
Following the notation of Ref, [44], a short and summarized development
is presented herein.

Surface s imbedded in three dimensional Euclidean space can be defined
by:

xtaxlu®) L, 1=1,2,3 ;a=1,2 (5.2.1)

where x! ‘are the coordinates of a point on the surface in the three

dimensional system and u® are the coordinates on surface s.

The covariant components of the metric tensor of the surface (or the

first fundamental form of the surface) are:

1.3
e gij Xy %3 (5.2.2)
The contravariant components, aaB' of the metric tensor are defined by:
8Y .Y
ag -2 6a (5.2.3)

A unit vector normal to the surface can be defined as follows:

(5.2.4)

where eijk and e“s are the permutation tensors for the space and for the

surface.

and use of the equality xi - x1

The total covariant derivative of a
a ;8 Bi;a

B
bring to the conclusion that:
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i Jo_
g.. X xY =0

1j "a;8
The implication here is there xi_B is orthogonal to xY
the surface. Thereby, a tensor baB must exist so that:
i i
XQ;B = bas n

Egs. (5.2.6) are known as the Weingarten equations.

(5.2.5)

! and consequently to

(5.2.6)

With the help of

tensor ba one can build the second fundamental form of the surface. The

B

total covariant derivative of the unit normal tensor is obtained by

differentiation of the normality conditions:

i3
gij " 9, (5.2.7)
yielding
i Yy .1
n,u= ba Xy (5.2.8)
The integrability conditions on x! are:
2 1 2 1
au = - 38 . (5.2.9)
du~ du du~ du
and they lead (from the covariant derivative of xi's) to:
i i 8 i
X008y ~ Xa;v8 " R.aBY X s (5.2.10)
where R6uBY is the Riemamn-Christoffel tensor of the surface given by:
§ 6
aY Y
6 aY aB £ § € §
R = - + Y Y -y (5.2.11)
.aBY auB auY aY €B af €Y
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RaBYG = A, .BYS (5.2.12)

Substitution of Egs. (5.2.6) and (5.2.8) into Eq. (5.2.10) yields the

Gauss-Codazzi equations:

b, ,~-b_ . ,=0 (Codazzi) (5.2.13)

pr buY - bpY baB = RpaBY (Gauss) (5t2.1u)

The Gaussian curvature of the surface k is defined by:

R
1212 1 @B Y6
K a § Ragvs (5.2.15)
af af af
where a = laaBl and €%° are permutation tensors of the surface (e = = e /Va)
or in alternate form:
b
R - T (5.2.16)
a = a
aB

Another important invariant H, the mean curvature of the surface, .is

defined by:

1 _aB :

Let us examine for awhile the role of the transformation tensor xi . For
any surface contravariant tensor of first order t% one may write
xi £® . ! (5.2.18)

Therefore, the components of t® are transformed to the space system. A

similar transformation for the covariant tensor is by no means obvious
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because the eq. (5.2.1) is not affine and there is no meaning to write u® =

u®(xiy. First, Let us define the inverse transformation tensor L? by:

a J _aB
I..i = giJ Xg @ (5.2.19)

This definition, Eq. (5.2.19), is obtained by multiplying Eq. (5.2.18) by
g1J x% and by assuming that Ti has only surface components. Then,
L? .8 (5.2.20)

The inverse transformation tensor L? obeys the following rules:

g 1P Ll - 2% (5.2.21)
J
L2 xl . 40 (5.2.22)
i 78 B *
a i
Lfn' =0 (5.2.23)

Moreover, it can easily be verified that:

a a
LS g = b5y (5.2.24)
b® = - L% nt (5.2.25)
B i ;8

The problems with the transformations, depicted by Eqs. (5.2.20) and
(5.2.18), stems from the limitation on tensor Tl to have only surface
components. From a general tensoﬁ Tl only the surface components are
obtained by those transformations (in the case of higher rank tensor A
little bit different component are lost). In order to overcome this
problem, we define the surface system slightly different and add a third

dimension by a unit vector normal to the surface. This system will be
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called latter on t-system. The transformation tensors for the new system

are defined as follows:

{ xi s I =1,2
Xp = (5.2.23)
nt ;T3
and accordingly.v
L? i T =1,2
Lf - (5.2.24)
nia r'3

The components of the covariant metric tensor for the new t-system are

J . a B i 3 .3
Xy = a dr GA +n n Gr GA (5.2.25)

i
ara " 833 Xp a i

Similarly, the components of the contravariant metric tensor are:

alt . gl L Lg - 2% 52 52 + 0 nl 5§ cg (5.2.26)

Now, the formal transformation of any tensor from the space system to the

new t—-system can be accomplished by:

o )T o b po, plip3 (5.2.27)
r a
or
r a
T eL{t = Lit vty (5.2.28)

This system, just defined, will be employed in the discussion of shell
structures,

Let us assume now that surface s is deformed in time so that the space
coordinates of a point on the surface are time dependent. Hence instead of

Eq. (5.2.1), we may now write
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xi = xi(ua,t) (5.2.29)

According to the three dimensional formulation in section two, the x1

system is the system at rest and the u® system is the material system (ua
being independent of t). At this stage of the formulation we need to

obtain the time derivatives of all the static parameters defined earlier in

this section.

The rate of change of the transformation tensor x: is paramount in

the description of the deformation of the surface. Hence repeating the

results of section 2.3 [Eq. (2.3.12)];

Dx9
2. 2 (y9) . pd gk 3L ya 8 (5.2.30)
Dt a sk a ia = ,a te

du
where the velocity vector in the fixed system is given by Eq. (2.3.6), or

i i i
i . dx ox~ - Dx (5.2.31)

dt - "ot = Dt

However, the components of the spatial velocity vector can be rephrased as

follows,

vi- xi vienly (5.2.32)

From this the expression, V?a is obtained through covariant
’

differentiation

i ey LY, i Y
L xY(v;a baW] +n (bYu vV o+ w;a) (5.2.33)
Comparison of Egs. (5.2.33) and (5.2.27) is suggesting the possibility of
simplifyving the formulation by using the t-system. To accomplish this,
there is a need to formulate an additional parameter, the material

derivative of the unit vector normal to the surface, ni, By time
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differentiation of gjj ni nJ = 1, one can come to the conclusion that the

material time-derivative of nid bn is orthogonal to nl itself and located

Dt
on a plane which is tangential to the surface. Hence, one can represent
i

Dn J' or

ot by a linear combination of xu
oo’ %y (5.2.34)
Dt a e

J

Differentiation of the orthogonality condition, giJ x; n” = 0, and use of

Eqs. (5.2.30) and (5.2.34) yields the following expression,

i3 R
g1J V'a nY + gij X, c Xy 0 (5.2.35)

Rearranging the terms of and substitution of Eq. (5.2.33) into Eq. (5.2.34)

J
yield the following expression for 2%? ,
J
b _ | o B 3
D a [bas VP o+ w;a] xy | (5.2.36)

In order to shorten the formulation we introduce two new parameters,

YO8 Y Y8 Y$ _ :
P A M I [va;a bsg W1 (5.2.37)

- - $ . a .Y aY
p =b, V + W a_ s aaé[bY vie a% W (5.2.38)

a Ya ia 6 ;Y]
Next, the different tensor will be denoted in the t—~system. The components

of the velocity vector, Eq. (5.2.32), can be written as,

(5.2.39)

Eq (5.2.30), can be extended to:
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(5.2.40)

The second term on the right hand of Eq. (5.2.40) stems from the definition

of x? [Eq. (5.2.23)]. Note that by employing Eqs. (5.2.33), (5.2.37) and

(5.2.38); one can write

RN
[xy o ']es (5.2.41)

It is useful for the forthcoming development to calculate the material

derivatives of the inverse transformation tensor L? (or Lg in the

1-system). By definition through Eq. (5.2.19), and in the t~system, Eg.

(5.2.24), time differentiation yields

r a
DL1 DL1 Dn1 r
- + 6
Dt Dt Dt 3
Y «a ay T _ Y Yy . T
= Ly 60 e ng 0% s - [ 6] 83 (5.2.42)

Consideration of the structure of‘Eqs. (5.2.41) and (5.2.42) suggests the
possibility of simplifying the notation considerably by introducing a new

tensor er, in the t-system, in the following way:

i
1 0%y

A detailed derivation of Eq. (5.2.43), taking into consideration the

defintions given by eqs. (5.2.37) and (5.2.38), shows that,

+0 38

-1 W

6

>

(5.2.44)



Hence:

- - 6? (5.2.45)
and

=0 (5.2.46)

Dxi

T i i A
ﬁ = V. r = XA w.r (5.2.47)

and
T

DL

i AT
St = "Ly v, (5.2.48)

In view of these simple expressions, Eqs. (5.2.47) and (5.2.48), one
can appreciate the importance of the introduction of the 1-system. It is
worth noticing, at this point, that, although most of the tensor quantities

will be expressed in t—-system, the mathemtical operations, like the

material derivative, will be performed in the material system u® . This is
done because the t—system {s not a true material system, because of the
third direction which is taken to be normél to the surface.

The next step is to calculate the material derivative of the metric

tensor in the t-system, Eg. (5.2.25):

DaPA

Dt

D i 1
- = [gij X, %, ] (5.2.49)

Since gjj is independent of time, we have

i J
Da Dxf DxA

TA i
ot - Bij [ 5 % * *r 3¢ ) (5.2.50)

But from the definition of Yra [Eq. (5.2.43)] and from Eqs. (5.2.47) and
(5.2.25) we obtain:
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Da,
—5t - [wFA + wAr] (5.2.51)

It is clear from its definition, Egs. (5.2.43), that er is not a symmetric

tensor. The description of the components of er in the u® system is

= (v + v - 2Wb
a

s Veia ) &% ai (5.2.52)

B

and the remaining of the (derivative) components, which permit ' = 3 or A =

3or ' = A =3, vanish.
The material derivative of the contravariant components of the metric

tensor is obtained in a similar manner from Eqgs. (5.2.26) and (5.2.48);

TA
Da I'r A
— = ] [w

A
Dt * gl =

.8

- af® aM[wW v+ ¥ ] » (5.2.53)

Q¢
Y8 _ r A
a (v + v, 2wnyp) 8, g

The derivative of the metric tensor determinant a = det (aaB). in the ua

system i{s obtained by:

ea Da
Da A 3a %a_, a8~ _da _ _aB (5.2.54)

"Dt = ot aaus 3t aaaB Dt

where it is recognized that aaB i{s a surface tensor so that its material
derivative is, in fact, a partial derivative.

da

aaaB

15,'1n fact, the cofactor of aaB given by:
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da - a% . a (5.2.55)

Substitution to Eq. (5.2.54) and rearrangement of the components yields,

Da a  _ a T
e - 2alvi, - Wb ] - 2a v (5.2.26)

Let us now introduce the rate of deformation tensor, dPA y DYy:

1 ,
dn, = 3 [er + WAY] (5.2.57)

and the spin tensor Wra by

1
=5 vy = vy p] (5.2.58)

L]

The rate of deformation and the spin tensors are the symmetric and

antisymmetric parts of er. The description of the components of drA is

simple,

dr, = %[vm;B * Vg -2 ) 6% b (5.2.59)
while the description of the components of w from Eq. (5.2.44) is
TA
“ra T % (Va-s - VB;aJ 6; Gi " Pa 6: si * pB 6? éﬁ B
B % [VG;B - VB.aJ 6? 62 - (baY vr * w;a) 6: Gi *
+ (b vY. W) 63 6 (5.2.60)

Another important element in the description of the deformation of surfaces

is the rate of change of the curvature, baB . From the definition of bm8

[Eq. (5.2.6)] we obtain:

b, =n x_ . (5.2.61)



The material derivative of Eq. (7.2.61) is then

i
-Db Dn Dx
aB i 1 L H
T — r— 2
Bt T xa;B *ng Dt (5.2.62)

From Eqs. (5.2.6) and (5.2.36) it is readily obtained that the first right

hand term of Eq. (5.2.62) is zero. 1In order to calculate the material

derivative of xi_s , there is a need to make use of the developed

L}
connection between the time material derivatives and the total covariant
derivatives (section 2.4). Following the derivation there and noticing that

the space is Euclidean results into

Dxi
a;8 i
ot = v;aB (5.2.63)

Substitution into Eq. (5.2.62) of the covariant differentiation of Eq.

(5.2.33) and then substitution into Eq. (5.2.13) ylelds the following

expression for DEB /Dt,

Db
af i Y Y Y _ .Y
Dt Ny V:aB bYa;BV Y bYB v;a * bYu v;B bB bYu W w;aB
(5.2.64)
or by using Egs. (5.2.37) and (5.2.38);
Db '
af Y
5t - bB Vyy * Pasp (5.2.65)

Another important variable, in obtaining materlal derivatives, is the

gradient of the normal vector to the surface, niu . Once again from
»

section 2.4 we have, for Euclidean space;
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0 Do (5.2.66)

From Eqs. (5.2.36) and (5.2.38) we obtain:

i
Dn ;
H SR S SR ¢ -y i
s~ [ P.q Xy + bYa p' n] (5.2.67)

The final expressions in Egs. (5.2.64) and (5.2.65) can be "translated", as

they are, into the t-system (in opposite e.g. to Eq. (5.2.63)):

(5.2.68)
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5.3 Geometry and Kinematics of Shell

5.3.1 - Geometry of the Shell Structure

A shell is a three-dimensional body with one dimension small, compared
to the other two. So, the shell structure can be viewed as some reference
surface having material of some thickness on both sides. It is usually
assumed that this reference surface is in the middle of the structure and
so it is called "the middle surface." Hence, it is possible to describe a
position of any material point of the shell by the foilowing system of

coordinates:

%] - (5-3-1)
E. 3 I =3

where u® are the material coordinates on the reference surface and and §q

is a material coordinate normal to the reference surface and assumed
independent of time. it 1s possible to choose E{, as the distance of the
material point from the refernce surface at time t = 0. Then the distance
of any material point from the reference surface at any time will be

constrained by:
- n(u®t) selel,t) s+ n (u®t) (5.3.2) -

where h is half the thickness of shell in that particular point. Most
generally, it is possible to describe the position of any material point in
the shell by:

x (7,t) = xMu®,t) + y'(e,¢) (5.3.3)
where x! 1s the position of the middle surface. The additional vector yl
.can be decomposed, in the t~system, into a reference surface part and a

part which is normal to the reference surface, or
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i r

CyieT,e) - Xp ¥ = xz y(e',t) + nly(e’,t) (5.3.4)

The component of yi, which'is normal to the reference surface, is the

distance of the material point from the reference surface, meaning,
T A T
gle ,t) _ y(e',t)
From Eq. (5.3.3) it is clear that for 63 = g5 = 0 we obtain:

x(u%,0,t) = x1(u%,t) (5.3.5a)

or, in fact:
y*(u®,0,t) = 0 ana Y(u%,0,t) = 0 (5.3.5b)

Without loss of generality, it can be assumed that, at t = O,

i

1 e%,0) = x1(u®,0) + ¥(67,0)n (5.3.6) .

This means tht at time t = 0, the particular point i1a on the normal to the
surface, 80:

ar. T

y (6',0) =0 (5.3.7)

Let us consider next a few approximating assumptions related to the

character of the deformation.

Assumption I: The material points which were on the normal before the

deformation will be on the same normal to the surface after deformation.

In other words:

i:- y*(e',0) = 0 then: y%(e',t) =0 ' (5.3.8)

" Substitution of this assumption, which is nothing else but the first

Kirchhoff-Love assumption (see section 5.1), into Eq. (5.3.3) yields:
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e7,t) = x1(u®,t) + (o5, t)n! (5.3.9)

From Eq. (5.3.5b) it can be shown that it is possible to expand Y into a

power series of {5 in the following manner:

v(el,e) = T w (wlt) - el =g, I v, (u"t) - &
n=1 n=0 .

(5.3.10)

With regard to Eq. (5.3.10), it is possible to introduce yet another
simplifying assumption.

Assumption II: The shell is "sufficiently thin" in order to assume a

linear dependence of x! on £o then,

(e',t) = 3 ¢1(u°.tl (5.3.11)

Substitution of Eq. (5.3.11) into Eq. (5.3.9) and use of the notation f

Y yleld:

1

Hel,t) = xtu®,t) + g ¥(u,t)n (5.3.12)

It should be remarked that it is possible at thls stage to assume a
parabolic dependence on o and to get a theory which are similar to
Reissner's theory. The linear dependence is the most popular in the
different approximate shell theories (for this shells).

Assumption II1I: The change with time of the gradient on the surface of the

shell is negligibly small. A different formulation of this assumption can

be found in Niordson's work [95]. According to this assumption, points
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which are on a surface which is parallel to the middle surface before

deformatin will be on a parallel surface after deformation, meaning that v

is the independent of u® e

i

§i(er,cJ = xi(ua,t] + sow(t)n (5.3.13)

Additional assumptions lead us to the classical formulations.

Assumption IV: The change with time of a distance of a particular point

!

from the middle surface is negligibly small. This is in fact the third

Kirchhoff-Love assumption and in our notation it means that £ (or Y or v)
are independent of time:

i

xle",t) = xMu,t) + £, N (5.3.14)

Eq. (7.3.14) is the common one (in the literature) for shell theories
obeying the Kirchhoff-Love hypotheses.

On the basis of the above four simplifying assumption, several
formulations result, for the analysis of thin shells. These formulations
are denoted below by capital letters.

Formulation A: This formulation makes use of Assumptino I, only.

Formulation B: This formulation employs Assumption I, and II.

Formulation C: This formulation employs Assumption I, II & III.

Formulation D: This is the classical thin shell theory based on the

. Kirchhoff-Love hypotheses or Assumptions I, II, III
and IV.

Formulation E: There exists a different formulation in the open

lliterature96' Assumption I (accounts for transverse shear effects). This

11terature96- 97 which removes Assumption I (accounts for transverse shear
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effects). This formulation starts by assuming that the shell is thin

but y° +» 0 in Eq, (5.3.4). In other words, they assume II without assuming
I and obtain from Eqs. (5.3.4) and (5.3.11).

xteT 1) = xt(u®t) + £y (ut)

- xt(ul,t) + Eo[xi 7%u%,t) + v(u®,t)nl] (5.3.15)

Additional Formulation: It is possible also in Eq. (5.3.15) to impose

additional assumptions about the shape of ¥, such as Assumptions III and IV.
The kinematics of the shell structure can be developed on the basis of any
of these assumptions (or others). The corresponding metric for the
different formulations are described next, before developing the kinematic
expressions,

5.3.2 = The Shell Metric

In this subsection we calculate the transformation tensors and the
covarariant components of the metric tensor for every one of the shell
formulations which were presented and discussed in the last subsection.

First, for the case of the most general description (without any
aproximating assumptions), from Eq. (5.3.3) we obtain the transformation

tensor:

-1 i i

Xip = Xt Y oir (5.3.16)
Already in the notation of Eq. (5.3.16) there is a hidden assumption that
the system at rest x! is cartezian. Otherwise, the transformation tensor,

which in fact is Bxilaer, would need an additional term which includes
Christofel symbols of the space, on the right hand side of Eq. (5.3.16).

From Eq. (5.3.4), one can write
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(5.3.17)

Similarly to the definitions given by egs. (5.2.37) and (5.2.38) for vi;r,

we define here the following tensors, for yi;r

a s _ .0
1% = 5y~ bg ¥ (5.3.18)
Yy =b ., y>+ ¥ (5.3.19)
.B af ;8

By substitution of Egs. (5.3.17), (5.3.18) and (5.3.19) into Eq. (5.2.16)

we obtain

-1 Y, o, iy o, b Ly, 1.3
X {x2 [s] + Ac] +n 70} 8-+ {xY Y;Eo +n Y’Eo} 8. (5.3.20)

The covariant metric tensor of the shell is defined by:

- -1 =1
Bry = gij XX, (5.3.21)

Substitution of Eq. (5.3.20) into Eq. (5.3.21) and rearrangement of the

terms yield the following expresasion:

- Y
Bry = lagg * Mg * Mg * Mg Myt Ya Vg 51 8y

Y a .3

* {ya;so * A Vet T Y;go} 6r 6y
(5- 30 22)
| ¥ , 3 B
* 1¥g,60 * %8 Yvse0 * Y8 Yigol 7 )

3

3
} GT 65
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where 248 is the metric tensor of the surface, Eq. (5.2.2). The

contravariant components of the metric tensor are defined from the
following equality:

~ ~AQ Q
8y "8 T Gr (5.3.23)

Similar to the surface formulation, it is possible to define here the

inverse transformation tensor Ei by:

~T ~Ty =3,

Ly = 8558 Xy (5.3.24)
So that,

=) =1 A

Li X o7 " § (5.3.25)
and

gl - gl if Eg (5.3.26)

It is worthwhile to notice that the covariant derivative of the shell's
metric tensor, Eq. (5.3.22), 18 not equal to zero. This means that raising

and lowering of indices in the space of the shell is not permutable with
covariant derivatives. For example for any vector Tr:
» 8 T (503-27)

Formulation A

We shall formulate now the metric of the shell in view of assumption I

. (Formulation A). From Eq. (5.3.9) or by direct reduction of Egq. (5.3.20)
for y° = 0, we obtain for the transformation tensor:

=1 1r,.Yy _ WY i a
X - {xy[da Ybo] +n Y;a} 8p + {Y:E

- oni} 6? (5.3.28)
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and for the metric tensor:

Y
= {a 2b o, Y+ Y by byt Y Y

grA aB aB

Formulation B

When the second assumptin is imposed (Formulation B), we obtain from
Eq. (5.3.12) for the transformation tensor:

i

)-(i
Y

i
e [6) - ¢, w') + ol g v s e fv nt} s? (5.3.30)

and for the metric tensor:

- ) 2 2 Y, 2 B
By = lagg — 26 Wb o+ EC WS by bo v EC U v fer 8y

ey ww 6% e+ feowu b 2} 83 63 (5.3.31)

Formulation C

When the third assumption is added (Formulation C) we obtain from Eq.

(5.3.13) for x%r:

=1

X, = {xi [51 - Eowb;]} 5? + {w ni} 6? (5.3.32)

and for the metric tensor:

2

+ si Wb} o sB

- _ 2) 3,3
gy = lay, = 260 wb gl 67 65+ fo°} 62 &3 (5.3.33)

Formulation D

For the classical shell approximation theory, we obtain from Eq.

(5-3.11‘):
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~i i Y Y a i 3

r o %y [6, = €0 )} 6p + o7} &5
~ _ 2 Y1 (0 B 3 43
gy = lagg = 26, byg + £ by bg} 80 8+ 87 &)

Formulation E

(5.3.34)

(5.3.35)

.Finally, for this formulation, we get slightly different expressions

from Eq. (5.3.15). First, for the transformation tensor:

~i i Y ~Y i = i~y i
X\po= {xY [60 + Eo Au] + n Eo [YG]} 6? + {xY y + n v} 6?
and then for the metric tensor:
~ ~ - 2r>Y - - = o B
By = fagg v 80 [h g0 T ) v el dyg e vy vell 6r 8,

+

-~ -Y- -
fy, + g, [, 9, ¢ 7, v} 5% &3

g e (15, v Tl ol

+

- ~Y 2 3 3
where:

~a ~ _ .0
g = (¥, = by

(5.3.36)

(5.3.37)

(5.3.38a)

(5.3.38b)

meaning that Y and Y are of the same structure as those defined by Eq.

- (5.3.18) and (5.3.19), but independent of Zo.
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5.3.3 - The Shell Kinematics

The kinematics of shell can be fully described by the components of

the rate of the transformation tensor er, defined by Eq. (5.2.43), for the
t-system. From Eqs. (5.2.57) and (5.2.58) it is clear that ¥ defines
exactly the strains and the rotations of the structure. If one is not
satisfied with the internal description, there 18 a need to define the
components of the velocity Qector at every point of the structure. Similar
to the metric analysis of the different possibilities to contract shell
theories (see previous subsection), in this subsection the components of
the v tensor and the components of the velocity vector will be defined for
every shell theory formulation of subsection 5.3.1.

Following the kinematic analysis of surfaces, we define now the

components of the velocity vector v by:

~i ~{ )
gl _Dx (5.3.34)

T T4t T Dt
Substitution of the general definitions given by Egs (5.3.3) and (5.3.4)

into Eqs. (5.3.34) ylelds:

~i D i i a i
Vi o= -5t [x" + X,y *+n Y] (5.3.35)

and through Egqs. (5.2.30), (5.2.31), (5.2.36), (5.3.37) and (5.2.38) one

can write

2
-1 1 i e, .1 DY _ v.i 1 DY
vV = Vv + vy L Yot X, D TP Xy Y+n Dt (5.3.36)

where vl is the velocity vector of the reference surface. Eq. (5.3.36) can
. be shortened by making use of the rt—system as follows:

i i i T
v = v + vV y + X
3T

Dy_ (5.3.37)
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We define now the rate of deformation tensor ¥ for the general case Eq.

(5.3.3). For this case the transformation tensor §1 is defined by Eq.

T
(5.3.20) and the metric¢ tensor by Eq. (5.3.22). From the definition for v,
Eq. (5.2.43), we obtain

- -1 DX;A

er = gij x;r Bt (5.3.38)

Substitution of Eq. (5.3.20) into Eq. (5.3.38) and reordering of terms

yield:

TA

+

+
<

b

O
-
[

(o]

+

>

[~ ]
L”‘"‘
o

+

]

l‘é‘

(5.3.39)
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where waB and p, are given by Egs. (5.2.37) and (5.2.38) and Ag and YO are
given by Eq. (5.3.38). Note that as is the metric tensor of the reference
surface.

For the sake of completeness we also include the expressions for the

rate of deformation, d , and spin, w tensors'according to the

TA TA?
definitions of Eqs (5.2.57) and (5.2.58), respectively,

§ 5
D) D)
= $ ) Yy .8 1 B a
R A e T T M M e L v~
8 M
DA DA DY DY
Y ] 8 o) 8 o o .B
tay Dy Tt 2 et Ve et s ol T 6,
Y 8
Dy DA
Y § 6 1 ;EO B .Y
* {dve Yieo? v %8 Yie0 * 2 13y T8 " ays (e Y.eo
Dy’ DY DY
8 ;EO B8 ;E0 3 .8 B .3
* g )t e Yot Vs e d) (85 8y 81 8y) ¢
Y
s y. DY

D DA DA
s el [hes, Zee 2l v, D,
oB 2 bt Dt Dt oB o Dt a Dt
DY Dy DA Dy
y _Ga ” 60 68 . _1_{ B;E0 + g v R JsY Y;E0 R
g8 Dt r°s 2" bt t Jv;eo 8 Dt
DY DY Dy
_B ;EO 3 .8 B .3 Yigo Y
* 5t Yeo * Ve et (87 6yt 6 8y) I v
DY
1E01 3 3
* Yoo o } 87 6 (5.3.40)
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Y Y
D3
w. o= {w _+w Ve w3 e a8 w1l a Eiﬁ - a 2 .
TA af aY "8 YB "o Y§ "a B 2 “Tay Dt BY Dt
§ y
né  m DY DY
Yy _'8__a,6 B _ _¢o -
+ a0 5t~ Bt el Yo Be T e Yl * Yy g T Ygey
§ a B Y § Y
r (v )B + YB Aa)} 6r GA + {WYB y.&o Wys }B y,go
y 5 Y
Dy. DA Dy, DY
+ .1- [—a —'5—9 + [.——B Y - 16 ,EO) B Y
2 173y Tt vs "Dt Y560 Y3 DU Dt *;to
PY o Y v 3 .8 _ 8.3
=Y B 1t ey 0 Y T YY)t g Yo der 8y - 6p 6yl

(5.3.41)
In Eqs. (5.3.40) and (5.3.41), d08 and Y8 are the component of the rate
of deformation and the apin tensors of the reference surface, defined by
Egs. (5.2.59) and (5.2.60).
It is worth noticing here again that the expressions in Eqs. (5.3.39) -
(5.3.41) are exact, but virtually impossible for someone to use them in
numerical computations, because of their complexity. However, they may.be

used to check the accuracy and performance of the other formulations.

Formulation A

We develop now the kinematic expressions according to Assumption I

(Formuldtion A), that is y"! 0. The components of the velocity vector are

obtained through differentiation of xi, Eq. (5.3.9), or by substitution of

_ the assumption yy = 0 into the exact expression of Eq. (5.3.36).
Accordingly we obtain: '

~i i y i i DY
v = v poxy, Y+ bt (7.3.42)
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The rate of transformation tensor is obtained also, by substitution of the
right transformation tensor into an Assumption I [from Eq. (5.3.34) into

the definition of Eq. (5.3.38), or .by reduction of Eq. (5.3.39)1:

~ Y Y Y 8,2
Vo, {waB Vyg Dg ¥ T Vyg by Y Uy b b Y
Y
Db DY
_ _ 8 _8B bY ;B
[acB agy b ¥) (¢ Y+ by 5)+ t.e "Dt
- - Yy B
by Yoot pp Yoo " 0y Y[, Y + b, ¥ 1} s 5,
+{E-‘-§Y -p bl Y Y o 3 8 (5.3.43)
DY DY
) Y - a .3 HX) 3 .3
¥ {Y;a ot ' Py % Y Y0 T %% Y;so} Sp 6y * {Y;Eo bt | 6% 6}

The rate of deformation tensor for the Formulation A is

Db Db’ Db
[+]

< _ Dbyg DY . 1 Y 2 Dby oY 2
dry =4 =5 Y- bt *3 (e by ¥ * Tt )
DY DY,
Y DY 1 H 8
* oy byt Ypp 3 (Y Bt Y Be 5t)} 65 5,
DY DY
1 H: A 3 .8 B .3
Bt Yot Vg —het (67 65 % 60 6))
+ y —5—} 53 (5.3.44)

;80 A
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Similarly, the appropriate spin tensor 1is

DbS
- Y _ Y Y &8 .1 78
R T o M M B R T L s
Dbg 5 DY, DY,
b68 Dt ]] Y 2 [Y;a Dt - Y.B Dt ]
- _ é _ .6 a B
LT ORI A O py(bB Y Y b Y Y;B)} 8. 8,
DY DY
l H - 350 - Y
(502 Yoo ~ Y8 7oL )= oy bg ¥ Yoo
3 .8 _ B3 |
* pg x;so} (67 6, - 6, %) : (5.3.45)

Study of Eq. (5.3.44) reveals that, in view of assumption I, there exist
shear strains through the thickness. These strains are equal to zero in
the reference surface [from Eq. (5.3.5b)], but different from zero anywhere
else and their value depends on the distance from the reference surface.
It is interesting to notice also that these components depends only on the
gradients of Y and on the time rate of change of these gradients.

Formulation B

If we assume now a linear dependence of Y on o, meaning that we
impose the second assumption also, we obtain the components of the velocity
vector through differentiation of Eq. (5.3.12), or by substitution of Eq.

(5.3.11) into Eq. (5.3.42), for this case

(5.3.46)

cﬂc
ctle
o

~1 i Yy 1
v = v Eo [) Xy + Eo

One should not confuse ¥ in Eq. (5.3.46), which 1s a scalar, with the

o~

components of the raté of the transformation tensor, er.
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In view of assumption 1I, the components of the rate of transformation

tensor, GrA, are obtain from substitutin of Eq. (5.3.11) into Eq.

(5.3.43), or

TA

- _iB 3
+ {wa g lv by Py = Bt v} 632 6

2 .Y Dy
[w bo Py * w;a Dt

3 43

A (5.3.47)

s {=we v g {w - }6

Similarly, the rate of deformation tensor, d , for assumption II, is

TA
obtain by substitution of Eq. (5.3.11) into Eq. (5.3.44), or

y
(-1 -{d -ng°8+b P.!’]+ 2[12?32_.[) +?_t_’1§by]
r» " '%p T fopt " s Bt "vg * Dt o
DV DV,
\ Dy, 1 8 B
+ o b vge * slv Bt v e ) 6T 8y

Dv

+ {% £, (=& v+ v

3 .8 B 3
Dt i 8 Dt)} 67 6, * 8. &3 ) {W Dt } 5 (5.3.48)

The components of the spin tensor w for this case, are obtained from

TA'
subsitution of Eq. (5.3.11) into Eq. (5.3.45), or
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£
"
=

TA

8 5
Db Db Dv
27,2 Y.y ¢ N B _ o . ;]
+ go[vluyg 8g by by + Wby =5 = b 5 )) ¢ % (v,
(5.3.1‘9)
Dv
H S ) _ .6 B
b, o)~ eglbg v, = bg v )b s 6y
Dw'B Dy 2 Y 3 .8 g8 .3
Y [t = o - —_—] - -

+ g + 5 [ (55 v = v pg) = V7 ey bl (87 65 - 6 63)

In both Eqs. (5.3.48) and (5.3.47) it i1s customary to neglect the terms

which are multiplied by 52, in accordance with the assumption that only

the terms which are linear in o, were kept before. Similar to the results
under assumption I (Formulation A), here also the shear strains, aar ,
vanish on the reference surface. This strain components are called by
Reissner [5.17] "the surface shear couples, The appearances of these shear
couples causes surfaces which are parallel to the reference surface before
the deformation not to remain parallel to it after deformation. This is so
because surface gradient of ¥ does not vanish. It is customary to give a

physical significance to the function ¢ [5.58] through the definition:

U o= (5.3.50)

Clearly then, the term g, ¥ 13 the distance of a particular point from the

reference surface, at time t. It is clear now, that the nonvanishing of

the gradient of v, (¥ 0) means that the change of thickness of the shell is
H4

inhomogeneous (nonconstant).
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Formulation C

If we superimpose now assumption III, that is, the independence of w
of u° , then (as explained before) the surfaces which ére parallel to the
reference surface will remain parallel after deformation. This means that
the change of thickness all over the shell will be the same. This does not
limit the shell to be of the same thickness, throughout. According to
assumption III, the corresponding velocity vector is obtained by

differentiation of Eqs. (5.3.13), or

-4 i Y 1 Dy '
Vo= v E, VP Xy *E FEDN (5.3.51)

This Eq. (7.3.51) is of course the same expression as Eq. (5.3.46) for

Formulation B. In contrast though, v , Which 1s obtained by a reduction

ThA
of Eq. (5.3.47), has a much simpler expression,

y
b
-~ _ Y Y 8
Uy = Togg = B [¥lvgy b+ vy ol v ay, —50) + vy g ]
Y
Db
2 s B Y, Dy g
+ g [viluyg oy by ¢ by 5E) ¢ by b v R} 6]

3 3

- 6 )+ (w } 5 (5.3.52)

Correspondingly, the components of the rate of the deformation tensor dTA'

for this formulation are [from Eq. (5.3.48)]

y

bb Db
. ) 2 Y8 .Y
dpy = da g~ e lv 55+ v, Dt] to [ (5% byg * Bt %)

Y D¥y, .o ,B D¥; 3 3
+ b b v==]} & 5A+{w }arsh (5.3.53)
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Similarly, the components of the spin tensor ;rA’ are obtained from Eq.

(5.3.49):

TA ofB o] Ya B Y8 o o) Y8 B
8 §
Db Db
1 8. - a- <8
+ 5(bs, 5t = s ot 1} 1 6
- 2 Y 3 .8 _ B .3
+ v o, - g [ oy vglh (67 64 = 81 83) (5.3.54)

As expected, assumption III causes the surface shear couples to vanish. A
formulation (development) based on Egs. (5.3.52) = (5.3.54), with the term
multiplyng £2 neglected, can be found in Ref. 98.

Formulation D

The addition of Assumption IV bring us to the rate formulation of the
classical shell theory, which includes all the Kirchhoff~Love hypotheses,.
Imposition of assumption IV, neglectng the change of thickness of shell
with time (v = 1), into Egs. (5.3.51) = (5.3.54) yields the following
e#pnessions:
for the velocity vector

Foavt-e Ui (5.3.55)

Db
-~ = _ Y Y _B
A L N L L L s | )]+
Y
Db
2 Y . 8 B o B
+ ggllwys by g * Oy, g )} sp 8y
_ Y 3 .8 _ (B .3
+ oy = g,lpy bl} (67 64 = 81 87) (5.3.56)



and for the rate of deformation tensor:

Db Db’ Db

3 - af 2rl_ o __Yg v a 8
dry = ldgg = 85051 * 85l5(5¢ byg * e ) o1 & (5.3.57)

the components of the spiri tensor remain unchanged, and they are given by

Eq. (5.3.54).

A formulation with displacement vectors as given by Egs. (5.3.55) -

(5.3.57), and with neglecting the terms which are multiplied by Eg, is
the classical formulation and appear in many works (see subsection 5.1).

Formulation E

Let us formulate next the kinematics for Formulation E, for which the
only requirement, from a physical point of view, is that the shell be thin
and from a mathematical point that the expressions have a linear dependence
on £,. The components of the velocity vector are obtained through time

differentiation of Eq. (5.3.15).

py° Yy i Dy i '
3 _v1+5(v1 ;0+xi-%-£-p XYW'*-D—%,n) (5.3.58)
o] O o

The components of the rate of transformation, rate of deformation and spin

tensors are obtained by an appropriate reduction of Eqs. (5.3.39) -

a
B

To

(5.3.41), that is in every place instead of 3 we substitute & AB and

instead of Y, we substitute Eo 70 » Where Ig and ;a are defined in Eq.

"(5.3.38). A kinematic development, based on this formulation and expressed

in finite displacements and rotations, can be bound in Ref, 98

5.3.4 -~ Shift to the t-System

The coordinate systems of the shell space ;ci, which were introduced in
subsection 5.3.1, are not well adjusted for the introduction and

development of the physical principles to follow. The reason for this is
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that, on one hand the metric is confusing and of special character (like
the nonvanishing of covariant derivative of the metric tensor) and on the
other hand it is impossible to compare quantities which are defined in
different coordinate systems. The solution to these difficulties is
accomplished by shifting the different kinematic parameters to one
coordinate system which is of a simple metric and obeys the Riceci Lema.
Such a coordinate system is the t-system which was'defined in subsection
5.2.1.

The component of any space vector Al can be expressed in both systems,

the 1-system or the different x1 systems, according to

i!
"

i i.r

- A
A xr a X

a (5.3.59)
From this, we can obtain the connection between the a - components and the

a =~ components, or

I =1 =T
a = L1 X, (5.3.60)
Following Ref. [98], we introduce the notation:
T A, T <1
Yy . Ly x ) (5.3.61a)
-ira -r i
)= Lg%y (5.3.61b)

From their definition, Eq. (7.3.61), tensors p and p~1 are nothing else but
euclidean shifters [99], and they will be used here to transfer the tensor
components from the different shell systems to subsection 5.3.1 to the
t~system., The shifters p and p~1 are absolute double tensors, and they

obey the orthogonality conditions,

r LA pT eyl 60 (5.3.62)
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Also from Ref. [@9], the metric tensor is transferred from one system to

the other by:

- P s ¢
8rp = Vr ¥y a . (5.3.63)

in other words, the metric is conserved during the transformation.
As mentioned earlier, the objective is to transfer the kinematic
expressions of the last subsection to the t-system. A short study of

subsection 5.3.3 reveals that the shift of the rate of transformation

tensor, 5: suffices to give all the needed internal information about the

character of the deformation. The definition of 5, from Eq. (5.2.43), is:

- =1 3 A

It is clear therefore that, in order to transfer 5 it is necessary to shift
the transformation ;}r and their material derivatives. We further note

that we are not discussing a "legal" transformation from system to system,

therefore 1t is impossible to perform a direct transformation of tensor v

without taking into account its components.

From the definitions of x; and LI in the t-system, Eqs. (5.2,23) ~

(5.2.24), and from Eq. (5.3.61) it is clear that the shift of the

transformation tensor is taken place by:

e R L ' | (5.3.65)

For the material derivtive of §§A’ which is, in fact, the covariant deriva-
’
tive of the velocity vector in the shell system, one must take a derivative

of Eq. (5.3.65) as is,

D§:r D(x; pg) -
bt " Dt {(5.3.66)
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From the chain rule and Eq. (5.2.47), one obtains

Dgfr 1 1 D”#
-B-t—- = V;A ur + XA Dt (5.3.67)

Substitution of Eqs. (5.3.65) and (5.3.67) into Eq. (5.3.64) yields:

2
Dy
v i v 3 @ i A
er gij X Vr [V;Q Vr * X9 Dt ] (5.3.68)

Finally, use of Egs. (5.2.43) and (5.2.25) resuylts into the form

-

Dug
[

Vot a oy —— (5.3.69)

s T Vr Py Vme t 20 Y B

The mixed components of ¥ are defined by:

A . -
-y (5.3.70)

ve TA

A

and from the inverse operation, in Eq. (5.3.63), we have

~¢ AL ~1¢ -1T -~
w.A a "y sV er (5.3.71)

Substitution of Eq. (5.3.69) into Eq. (5.3.71) and reordering of the terms

with the help of Eq. (5.3.62) yield the following expression:

Du9
~ 2 =1¢ A -1¢ A
w.A VAV, W_Q ty o Dt (5.3.72)

With the help of Egs. (5.3.69) and (5.3.72) it is possible to express all
the kinematic parameters in the 1-8ystem. The shape of the tensors p and

its inverse, u“. will depend on the definition of the shell system, or, in

fact, on the definition of Ei, according to the different assumptions in

.Subsection 5.3.1.
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At this point, one may ask if there is a need for all the
manipulations of the kinematics in the preceding subsections, since it
suffiées to find the expressions for y and y~1 and by these to uniquely
define all the kinematics, However, inspite of the simplicity of the
expressions in Eq. (5.3.61), it is not simple at all to find the
expressions for the shift tensors, especially for u“.

For the components of y we obtain a closed form expression by

substitution of the general definition of ;}T from Eq.. (5.3.20) into Eq.

(5.3.61a), or

r_ r ri .o T 3
]JA {60“’ A.a} GA + y;so GA (5-3-73)
where,
A
4,3 S R (5.3.74)

o= ".c

The expression in Eq. (5.3.73) is exact, and it is possible to introduce it
into any one of the five formulations (A-E) or into additional formulationms.
As an example, we may substitute the classical assumptions (I-IV) into Eq.
(5.3.73). In this case, yl = 5 nl and

r

Y ) A S |
VT b, & 60 b Yo 63 (5.3.75)
Substitution of Eq. (5.3.75) into Eq. (5.3.73) for y:
T Y _ Yy .0 T 3 .T :
vy {sc 3 ba} &y 8y * & 83 (5.3.76)

which is the same expression as in Refs. [98] and [99].
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For the inverse shift tensor, u'1, it is possible to make a similar
development as for y, that is substitution of Eq. (5.3.20) into the

r
i

(5.3.61b) yields,

definition of L , Eq. (5.3.24), and a repeat substitution into Eq.

v g

! s 2. ) 8 3} (5.3.77)

8
3588 6" Yrieo %

oY Ta

In contrast to the expression for vy, in Eq. (5.3.73), Eq. (5.3.77) includes
the metric tensor of the shell and is not expressible in terms of
parameters for t-system, only. In order to overcome this problem for the
full Kirchhof-Love assumptions (Formulation E), Refs. [98] ana [99]
developed p~1 in terms of power series in £o, and kept only the 1linear
term. If we assume linearity in Eo, and kept meaning neglecting the term
multiplied by Es in Eq. (5.3.35), and substitute Eq. (5.3.75) into Eq.

(5.3.77), we obtain the same expression for the approximate p~' as in Refs.

(98] and [99]. This expression is

=18 _ 1Y Yy B A 3 A

r {58 + Eo bB} 8; 8y + 67 8y (5.3.78)
At this state of our development, we shall not make any assumptions or
approximations for the expression of u'1. and we shall keep the full

expansion, as given by Eq. (5.3.77).
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5.4 - The Principle of the Rate of Virtual Power

5.4.1 ~ The Principle of Virtual Power and the Equation of Equilibrium

The principle of virtual power (virtual velocities), as applied to
shells, may be stated, in a similar manner as in the three dimensional

formulations, or

rsGrdv— JYF §v. dA, = 0  (5.4.1)

Ay

where all the parameters are referred to the material system of the shell

~TA - _ [ ~
I 0 ) er dv J p B
v v

space

Grh - are the components of the Cauchy stress tensor

ETA - are the components of the rate of transformation tensor

§r - are the components of body forces per unit mass

Fr - are the components of the external forces on the boundaries per
unit area mass.

;r - are the components of the velocity vector in the shell system.

P - volume mass density

Y - mass density per unit area

In order to simplify the first discussion, we limit ourselves to the
case in which the external forces are applied only on the shell bounding
_surfaces (o = : h). Moreover, we assume that the shell is supported
(constrained against translation) around the boundary of the reference
surface in the transverse direction. A volume is defined in the shell

system, Eq. (5.3.1) by
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A
av = (;‘d91 402 do3 = Z de' e ag (5.4.2)

where g 1s the metric determinant of the shell [fE‘- det(grh)]. Eq. (5.4.2)

can be written also in the following way:
dv = da dg (5.4.3)

where da 1s a differential area at a distance g, from the reference

surface.

Without losing generality, we can write for é:

& - g - z(¢,) (5.4.4)
where g is the metric determinant in the t—system, and Z is a function of
To» Whose shape changes according to the definition of particular (7)
system, or actually according to the different assumptions about the
character of the deformation. In view of Eqs. (5.4.1) and (5.4.2), we can

state for dV:

av = {3 - Z(go) do' de® aE, = 2(,) da dE  (5.4.5)

where da is a differential area on the references surfacé. In a similar
manner we obtain the following expression for dA (differential area on the
bounding surface)

dA, = Z(3 h) da (5.4.6)
The expressions appearing as integrands in Eq. (5.4.1) need additional
_ treatment also. It will be convenient to transfer all tensor quantities

from the shell system to the t-system. For the first integral in Eq.
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(5.4.1), by making use of Egs. (5.3.61), (5.3.69), (5.3.62), by reordering

the terms and by substituting Eq. (5.4.5), we obtain the following

2
Duh

~TA =~ LL =1HA
J o " sy dv = | o [su_ + a_o(v )¢ St ] Z(EOJ dg da (5.4.7)

TA g
'}

<

At this stage, we introduce the first approximatin by neglecting the

terms multiplied by gg [inside the brackets of the Eq. (5.4.7)]. This
linearization does not affect the term éwp¢, which 1s independent of g,.

The approximation only affects the second term in the brackets, a term

which will always contain certain higher powers of £, (but at least Eg).

In view of this approximation, the term in the square brackets is at most

linear in g5. Hence, we can denote the coefficients of Eo by wa¢ and the

one which is free of £, by 67“ In addition, we introduce the following

¢.
expressions.

+h
L) [ 7o
N J g Z(EO) dEO (5.“.8)
=h
+h
T o
M [ o™ g - 26 de, (5.4.9)
~h
Note that both N1T¢ and MN are symmetric tensors, by definition. We can

now write Eq. (5.4.7) in the following from:

~Tp =~ T
I o' " Su., dV I [N 8Y_
' a
This form is used widely in the literature and it will be adopted, herein,

Té
ot M 6rﬂ¢]da (5.4.10)

in order to facilitate comparison with other works.
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We next proceed to deal with the second volume integral in Eq. (7.4.1).
Here also we transfer all the tensors quantities to the t—-system. Vector F
is transfered directly to the t-system in a standard way by employing the

shift tensor v-1, but the transfer of GQr needs some additional
considerations. From the general definition for ;1, Eq. (5.3.37), we can
express vi by:

A
vi = xi[vA + w“ yr + E%E] f X, A (5.4.11)

*
From this, it becomes clear that vA are, in fact, the components of the

velocity vector v in the 1-system. The formal transfer of ;T to the

T-system is therefore:

*
v Ty (5.4.12)

r " 'r

Substitution of Eq. (5.4.12) into the second integral of Eq. (5.4.1), and
(similar) transfer §T into the t-system, making use of the orthogonality
relations of the shift tensors, Eq. (5.3.62), and of Eq. (5.4.5) yield the

following expression:

*

=T .= T
J pB 6vr av = I pB 6vr . Z(zo) . dEo da (5.4.13)
v v
T T
We next define two new parameters, similar to N and M7, by
+h
T T '

b = J pB" . z(so) . dg (5.4.14)
~h
+h

¢’ - J BT « £ . z(g ) - dt (5.4.15)

o) o o e

~h

*
Here, also we impose the assumption that in the expression of v, we can
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neglect all the terms of {5 with powers bigger than one, whenever they

*
exist. The term Gvr can also be separated into a 1linear component £, with

(0)

o With

Geﬁi) as a coefficient and a components which is free of £,, 8§86
the help of definitions given by Egs. (5.4.14) and (5.4.15), the second

integral in Eq. (5.4.1) can be expressed as

(0) r..(1

J B! 5%, av = J [o' 50 2+ a"ee' ] da (5.4.16)

v a
The treatment of the third integral in Eq. (5.4.1) is similar to the

treatment of the second. Transfer of the tensorial quantities to the

t~aystem and substitution of Eq. (5.4.6) yields:

*

f y F¥ 5;r dA = { yB¥ sV, [z(eo) ] da (5.4.17)

A a Eo-h + h

We define now the following values:

AR AN ] (5.4.18)

Favel v e . [z(g) ] (5.4.19)

*
By using these definitions and separation of $§v as applied to the second

integral, we obtain the following expression for the third integral:

I yi¥ 5V, dA - { [frse(?) v of ae(})] da (5.4.20)
A a
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Finally, from Eqs. (5.4.10), (5.4.16) and (5.4.20) it is possible to

express the principle of Virtual Power, Eq. (5.4.1), in the following form:

j [NT° &, * M™ 5y (7 + ) ce(?) - (d" v el se(})] da = 0

a
(5.4.21)

The equilibrium equations and the boundary conditions are obtaine from Eq.
(5.4.21) by the application of the Gauss-Green theorem, where the character

(1)

of the kinematics variables 6Yw 6k 6e£0) and Ger depends on the

o' e’
different approximations assumptions for the deformation of the shell
structure.

As an example we will derive next the equations of equilibrium and the
boundary conditions for Formulation D in subsection 5.3.1; meaning, the
classical theory based on the Kirchhoff-Love hypotheses. From the

definition for ww¢ in Eq. (5.2.44) and the expressions for the shift

tensors for this case (Formulation D) in Eqs. (5.3.76) and (5.3.78) we

obtain:
57w¢ - 6ww¢ - (Gva;B - baBsw) 6: 6:
+ (5w’ + b 6v.) [53 6: - 6: 63) (5.4.22)
and
5y -aaya(ggé) &% 5: - - {b;;s 6vy + b &V. .,
= by 6V, + W o+ bb oW 83 5 (5.4.23)

Y a 3
+ b, vy)] 8L+ Wl (5.4.24)



From the above, one may write

(0) a 3

e’ = (dvaJ 67+ (5”)_5r (5.4.25)
(1) _ Y a

de’ ’ = [5w;° + b, Gvy]ér (5.4.26)

Substitution of Egs. (5.4.22), (5.4.23), (5.4.25) and (5.4.26) into the

principle of Virtual Power, Eq. (5.4.21), making use of equations of the

type:
aB aB _ goB
N eV, (N 5v0);8 N 8 8v, . (5.4.27a)
aB .Y oB. Y _ (yOB.Y
M7 b vy, (M b, 5vy);8 (M bo];scvY , (5.4.27b)

and using the Gauas-Green theorem, for the first term on the right hand
side of Eq. (5.4.27), ylelds the final expression of the principle of

Virtual Power for Formulation D,

_ yOB '_ aY . B Y8 e _ (.0 a Y Yy .0
J [[-N - (M bY];B + M7 by (b% + £%) + (d + ') by] sv,

a

* [-N aB ;af B Yo

+

I [N =M™ b2 e w0 W BB] -y

4 . o+ [MGB; +af v cB) v, oW

8 o B

38

- mo8 . vg + oW, } ds = 0. (5.1,28)

where v iIs a unit vector normal to surface s. Thus, the equilibrium

_equation for the classical theory will. be:
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aB aYy .8 _ uYB o o _ Y.,o _ .
(N®% + M by)'s M7 by + P m by 0 (5.4.29a)
af af ag . Y 3 L
N b g e M M by by PP+ m, =0 (5.4.29)
S R I Ll (5.4.30)

Moreover, the boundary conditions on s from Eq. (5.4,28), under the
assumption that there are no forces applied on surfaces normal to the

reference; are

[N°B - M8 bS + M'e bg] ¢ vg = 0 or sv = 0 (5.4.31a)
M8+ mB] . v =0 or §W = 0 (5.4.31b)
;o B s
Mo v -0 or sW._ = 0 (5.4.31¢)

Similar to the definition of v, it is possible to define a unit vector t,
tangent to s, and by this to break the partial derivative of éw into
tangent to - s and normal to - s components

6“:0 = 6“;? vt 6“;5 . to (5.4.32)

Substitution of Eq. (5.4.32) into Eq. (5.4.28) and performing integration
by parts, similar to Ref. [100], yield the final shape of the boundary
conditions, Eq. (5.4.31). While Eq. (5.4.31a) does not change the next two

_do and instead of Eqs. (5.4.31 b,c) we have:
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t ) . =0 or 6W =0 (5.4.33a)

M oy v =0 or W = 0 (5.4.33b)

It must be noticed here that had we not assumed that there are no external
forces on the surface normal to the reference surface then, the requirement
for the vanishing of the static values in the boundary conditions, Eq.
(5.4.31a) and (5.4.33), would be changed to the requirement that they would
be equal to the external forces.

Eqs. (5.4.29), which were obtained here for the classjcal theory,
differ from the customary equations, as in Refs. [98] [100]. The reason

ra

for the difference lies in the definitions for NrA and M"". From Ref, 98.

TA

the stress resultant N' = and the stress couples ﬁrA are defined in the

following manner.
+h

=TA ~TA |
N'D - j o " . z(go) dg (5.4.38a)
~h

+h
T J o' g -zle,) (5.4.34b)

o
~h
Moreover, similar definitions for the components of the body and external
forces are given., Use of these definitions yilds the following system of

equations [100].

a8

- NOB baB + MOB b; bYB -M g™ 0 (5.4.35a)
- NGB;B f-MYB b:'B 4 Z(MYB b:);sn 0 (5.4.35b)

where Eqs. (5.4.35) were written without body or external forces. These

equations, Eqs (5.4.35) replace Egs. (5.4.29).
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From the definitions, given by Egs. (5.4.34), it is possible to
developed equilibrium equations for the different formulations. For
example, we obtain the equilibrium equations for assumption V of subsection
5.3 by a similar process. Without external or body forces, the equilibrium

equations for this case become

_ qoB 33 .Y 6 aB Y _ a8
N b+ N7y yT by M YD b, (M Y];as
38 Yr.p ) 5
+ WP yly boy;g * 0 Dy * 233 bGY] =0 (5.4.36a)
—NOB 33 8 .« Y8 .0 S uYB .0
[-N®F + N2 y® y% + 2M Yby]’B M7 Yol
_ YB o 138 Y O 3Y
LR ERS 1L A T I INCY ) B
3B8r.ary. Y Y Yoo o o
+ {M"[y (Yo, + )8) +y (YbB + AB)]};Y =0 (5.4.36b)
N3 - [uoB 4 3B y°), , M3B[ng +28) =0 (5.4.36¢)
33 . _ 08, _ r,38 38 o 1.
N>y - MP b [M Y];s' M [vB ybYB] 0 (5.4.36d)
the related boundary conditions are:
oB aB
[M Y];B v, * (M Yy, tc);s -0 or W =10 (5.4.37a)

Y8 o 3Y7,9(vyB 8 Bry,0 a
{a"% ¥ o] + w7 [y (o] + 23) + yP(x6] + 23)]} v,

- {[MBY ye + y°(M38 v+ m3Y yB)] vy tB};s =0 or v =0

il
2

(5.4.37b)
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Dy

[M®B m3B o7 . vg = 0 or § —5% =0  (5.4.37c)
m38 Yv, = 0 or § %% -0 (5.4.37d)

It will be also noticed that Egs. (5.4.35a) and (5.4.36b) reduce for the
equality to the known equations (5.4.35), as expected. Similarly, the
boundary conditions, Eqs. (5.4.37a) and (5.4.37b), reduce to those found in
Ref. [100].

5.4,2 = The Principle of the Rate of Virtual Power and the

Rate of Equations of Equilibrium

The principle of the rate of virtual power is obtained by total

differentiation of the principle of virtual power [see Eq. (5.4.1)],

d ~TN .=
at J o (1)

_ . d =T .= __d = .= -
) dav at J p B Gvr dv —at J YF 6vr dA 0
v v A

(5.4.38)
There is a need to perform a formal time differentiation of every one of

the integrals in Eq. (5.4.38). Substitution of the definitions given by

Eqs. (5.4.8) and (5.4.9), into the first integral in Eq. (5.4.38) yields,

A d [ -TA .~ d TA TA
1. - J o " Sb,, V= —& f [N Y, + M GKrA] da
v a
or,
y
L. I @ et T alevy,) T d(skrn)] .
at °'ra T Tat . °Fra dt dt
a .
TS ) d(da)
+ j [N 5Y,+ M s"rn] 5t (5.4.5%0)
a
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where the time derivative of an elmental area of the surface is from Eq.
(5.4.5):

d(da) d 1 2 Y]
it % (') e’ de® = v da (5.4.41)

Substitution of Eq. (5.4.41) into Eq. (5.4.40) yields the following

expression for I:

T T
_ [ oy TH R : dy Ty @
I= (Ege s v v ov, S e W7 i) ey
a
d(sy. . ) aléx_,)
e W) e W) - aa (5.4.42)

The second integral in Eq. (5.4.38) can be developed in a similar manner.
By using the definitions, given by Egqs. (5.4.13) and (5.4.14), we obtain

[see Eq. (5.4.16)]:

I [b sa(?)+ af se(})] da (5.4.43)

O-lﬂ.
ct

a
Finally, for the third integral in Eq. (5.4.38) we obtain from Egs.

(5.4.18) and (5.4.19):

s _d I 5,(0) I so(1)
Iy o 5 J [ 56" 7 + ¢ s0°.") da (5.4.44)
a

Use of Eq. (5.4.41) into Eqs. (5.4.43) and (5.4.44), the addition of these

two and use of definition, given by Eq. (5.4.30), finally ylelds:

r r
SER R I ([ v p7 o ] 500+ [22 4 o 4% ] 6o!)

1 2 dt T dt T
a
(0) (1)
r, afse’; ) r, dlse’;
+ [P] % * [ ] — } da (5.4.45)
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Hence, the principle of the rate of virtual power, generally, can be
expressed by:

I-J=0 (5.4.46)
where I express the rate of the internal stresses power and J the rate of
the external (applied forces) power.,

Because of the nature of the elasto-visco-plastic constitutive
relations, there is a need to replace the total time derivatives in Eq.

(5.4.42), by Jaumann derivatives. From Eq. (3.2.51) we obtain for I:

J.TA
N1 e A . Te . TH R
1 J | gt u N W NN w.g] 5Y.,
" .
J., Th '
d'M T A A T TA 0
e, bOh s we M ¢ v ol o<,
a(sy..) d(sc_ )
+ W) — s W) —5 ) aa (5.4.47)

As an example we shall develop now the principle of the rate of
virtual power for the classical theory of shells, Formulation D in
subection 5.3. For the sake of simplicity, we assume that there are no
external forces and hence, the development deals only with the explicit
expression for the internal power, I. It must be noticed that the
addition of the integral which expresses, the influence of the external
forces is not causing any difficulty at all. .In order to obtain the
explicit expression for 1 in Eq. (5.4.47), there is need to develop the

expressions for the total time derivatives of 67” and Gx”. Derivation

_according to time of Eqs. (5.4.22) and (5.4.23) ylelds:
d(sv,,) {d(s v,) dew) _ v 4

at - & ;8 Peg dt 8 Va3
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where we made use of the connections between the total time derivatives of
covariant derivatives and the covariant derivatives of the total time one
(see section 2). We define also the following symbol:

A DY

[,"s) - S - v (5.4.50)

Substitution of Eqs. (5.4.22), (5.4.23), (5.4.48) and (5.4.49) into Eq.
(5.4.48) and reordering of terms yleld the explicit expression for I:
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d(sv ) d(sv.)
R J {NGB[ o - b S{6W ] MGB[bY Y
dt ;B "B dt a;8 dt
v
Y d(év.) o d(ev,) , dlew AN d!GH!} av
s T dt g % Tat ;v Tdt o8 ' %8 Ova T at
(5.4.51)

As already mentioned, it is relatively easy to obtain the explicit
expression for J, in Eq. (5..45), and thus complete the formulation of the
principle of the rate of virtual power for the classical case of
Formulation D). It must be noticed that the second integral in Egq.
(5.4.51) is equal to the principle of virtual power itself and therefore
can be erased from the expression for I.

The principle of the rate of the virtual power is equivalent by
definition to the equations of the rate of equilibrium and the
corresponding boundary conditions. The equations of the rate of
equilibrium can be developed therefore from eq. (5.4.51) by the same method
we used to obtain the equation of equlibrium Eq. (5.4.29), from thg
principle of virtual power or by direct time differentiation of Eq.

(5.4.29). In both case we obtain the following system of equations:

ng:B . dngY bs . dJ::B . b: . Nus[yog] + N°B [WTY;B]
SN L I R R P R G A R )
R IO IR IR B gt [wic.bg N
o w2 [w?sb: PR Lt IR I (il I B (N Mo8
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M ].B by +# MU " by = M U by
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dJNoB . . dJMOB . dJMaB by . . NGB {
at aB at_ ;aB at_ °B g Pasp
Y __Y b aBy Y Y
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+ M {w.y;a du;y} M yg * Y ;ev} d, =0 ‘ (5.4.52b)

It might be thought that in the principle itself, Eq. (5.4.81), and in the

equations of equilibrium, Eqs. (5.4.52) also, there exist additional terms

which depend on N3cand M3°. The requirement of symmetry of the Cauchy

stress tensor in the system (~):

; ;TA
TAw

can be transfer to the t-system in the following manner:

- 0 ? (5.’4.53)

=TA _ 49 -7 18

. z(g,) erpy - VgV g (5.4.54)

€
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Integration of Eq. (5.4.54) through the thickness of the shell and use of
the definitions, given by Eqs (5.4.8) and '(5.14.9), yield, among others, the
following condition (for T = 3):

3y 36, Y
3M{N + M bs} =0 (5.4.55)

From this it is clear that the terms in the brackets of Eq. (5.4.55) must

€

be- zero themselves without any connection to the permutation tensor. Study

of Eqs. (5.4.51) and (5.4.52) shows that substitution of Eq.(5.4.55) will

lead to the absence of N03 and M°3f‘rom several terms (simplification).
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6. PLANAR CURVED BEAMS

6.1 Introduction

Section 6 deals with the kinematic and the constitutive equations used
for the numerical analysis of planar curved beams.

Formulation of problems concerned with finite deformation of beams has
followed two different paths'0!, prescribing the beam by its deformed or
undeformed centroidal axis and cross section, one may introduce at the
outset beam stress resultants and their conjugate kinematic variables
characterizing displacement and rotation of the cross section. Together
with appropriate beam constitutive equations and a global balance law a
consistent theory {s obtained. Alternatively, one may imbed beam theory in
the setting of deformable solid continua, in which, case one is concerned
with local constitutive equations connecting the stress tensor with a
stralin tensor, which may in turn be expressed in terms of a combination of
undetermined beam kinematic variables and functions of the beam coordinates.
Momentum may then be‘balanced globally by integrating the local equations
over the deformed beam configuration. Both paths will be considered in
what follows.

A complete abinito rate theory for the second path can be obtained by
an appropriate plane stress approximation of the three-dimensional
formulations presented in sections two and three. This approach is
presented in Subsection 6.2. The rate form of the field equations for
finite strains and rotations of curved beams according to the first path,
" can be obtained by a careful reduction of the shell theory, presented in
section five. A simplified version of this formulation is presenttd in
Subsection 6.3. Finally, three simple numerical examples are demonstrated

in Subsection 6.4.
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6.2 Plane Stress Approximation

The constitutive relation presented in section three will be -rephrased

here, in some different and compact form as follows

. iy, k ky 2.
a) if F=(t -Co &g sk)(ti -Cop 8 81) - k“(w,T) = 0 (6.2.1)
1 i Po i
where, Sk' the Kirchhoff stress tensor, sk = -3 O and the temperature T

are independent process variables, ti being the deviator of the Kirchhoff

P
stress, si, and W and Bt are internal parameters, then

v v

i i v .r i S S | 1
d, - (s, = 7= s 8 rats +alt ~co es) 6.2.2)
~N— — N~ 4 o
E P
ot a
K K
with
i Ly K k
.1l -coe gl -Co g By)y
| ]2 -1}
n 2
K
Et - ! - (ti ~Cop 8 Bi) +Co 8 Bi (6.2.3)
1+ 4
. P
. P .
1 -1k
W= - t, d (6.2.4)
(o]
v P
i i
B, = ¢ dy (6.2.5)
b) if F=0 . (6.2.6)
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and T k* 3T T>O0 (6.2.7)
as
K
E
i i
then dk = dk (6.2.8)
P
P v -
di =0 al - 2x(t; - Cp gBi) (6.2.9)
v 2
- 1 i 1y [k ok° =
with ) o= 5 {2(tk Co,8 sk) ty 3T T} (6.2.10)
8nk
F i  oF s
c) if F=0 and —— s =Tso0 (6.2.11)
1 k9T
3s
K
or F<O (6.2.12)
1 By
then d = d, (6.2.13)
P
We=0 (6.2.14)
vy
Bk =0 (6.2.15)

By definition, a body is said to be in the state of plane stress
parallel to the u', u2 plane when the stress components o¢'3, ¢23, ¢33
vanish!02, 1t is well known in literature that the case of plané stress
isdifficult to handle theoretically. Even linear elasticity has to

treat this case in an approximate manner. To remove some of theoretical
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difficulties Durban and Baruch!03 introduced the notion of Generalized
Plane Stress, where instead of dealing with the quantities themselves, one
deals with their average values,

In our case the problem is even more difficult. The nonlinearlities,
which the general three-dimensional theory takes into account will also
cause a large change of the geometrical quantities in the u3 direction.
Clearly, some assumptions are needed to treat the case of plane stress as
a two-dimensional case.

The first basic assumption is that the thickness, h, of the plate
defined by the coordinates u‘, ul located in its middle plane, is small
as compared with the other two dihenslons. A second assumption is that the
external forces act in the u1. u2 directions and are symmetrically
distributed with respect to the middle plane.

In a way similar to the procedure proposed by Durban and Baruch!03,
all the kinematic expressions are obtained by averaging the
three-dimensional expressions.

A basic assumption for the case of plane stress is that the components
connected with the third direction are amall and can be neglected. So, a

new concept of generalized stress tensor 1is introduced

K . (6.2.16)

It must be noted that in the linear theory of elasticity, where the
geometry does not change, the averaged and generalized stress tensors
coincide.

So the three-dimensional incremental elasto-viscoplastic theory,
developed previously, can be adopted for two-dimension plane stress

problems.
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6.3 A Simplified Version of Thin Curved Beam Element

Fig. 6.1 - Reference Line of a Curved Beam

A portion of the reference line for a curved beam ls shown on Fig.
6.1. The current arc length is denoted by s, while ¢ is the current angle
of inclination of the normar to the reference line, and p is the radius
of curvature.

The stress resultants acting on the beam cross section are the bending
moment M, the axial force N, and the shear force Q. The external load,

measured per unit of current length of the reference line, has the components

Pg and P in the direction of the unit vectors ;s and gn respectively.

If Vg and Vn denote the velocity components in the direction of the

unit vectors 33 and En respectively, the rate of extension is

avs A
d-—-é—s--——p' (6.3-1)

The rate of rotation, 6, of a given section is given by.

. ov \
w-¢=—aé*

=}

(6.3.2)

olw
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while the generalized rate of deformation associated with bending is

. v
&-.BJQ=_8_(__n+_.§)

3s 5 (6.3.3)

The rate of equilibrium equations for this simplified version may be

put in the following form: -

N _ 3 _ 2230, ¢
a8 as Q as * ps +d ps 0
3Q 3 o b . -
s + N aS 4+ N as + pn + d pn = 0 (6.3.")
-g'b-sd' + Q + dQ = O

6.4 Numerical Examples

The quasi-linear nature of the velocity equilibrium equations suggests
the adoption of an incremental approach to numerical integration with
respect to time. The availablility of the field formulation provides
assurance of the completeness of the incremental equations and allows the
use of any convenlient procedure for spatial integration over the domain B.
In the present instance the choice has been made in favor of a simple first
order expansion in time for the construction of incremental solutions from
the results of finite element spatial integration of the governing
equations,

The procedure employed permits the rates of the field formulation to
be interpreted as increments in the numerical solution. This is
_particularly convenient for the construction of incremental boundary
condition histories.

The capabilities of the presented models here-in have been evaluated

through three simple numerical examples. The first example demonstrates
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the capabllity of the plane stress approximation to predict deflections and

stresses in a beam loaded by a constant moment. Figure 6.2 illustrates the

beam and the finite element model. A quarter of the beam was divided into
six elements in the vertical direction and into five elements in the

horizontal direction. The external moment was introduced by six parallel

forces acting on the section BC (see Fig. 6.2).
The value of the external moment 15 3500 kg/cm, and the material of

the beam is CHR-17. The viscoplastic properties of the material were

.obtained experimentally from uniaxial tests in Ref. 9., This properties

were collaborated into the present material model.

The variation of the deflection of point E as a function of time is
given in Fig. 6.3. It is important té point out the value of the large
deformation analysis, After ten minutes of the deformation is increased by

424 and at the same time there are important changes in the stress field

(see Fig. 6.4),

7\ A B
E

(e —

I
(]

£ ' F
Fig. 6.2 - The Beam Model ‘ ,l
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The next example consists of a straight simply supported beam, loaded
by a transverse concentrate force at the midspan. The beam is 25 inches
long, two inches high and one inch wide. The material is stainless steel
304 (Heat 9T2796). The material constants in sub section 6.2 were
correlated with the uniaxial tension experimental results given in Ref.loA4.
The beam was subjected to a load of 2000 pounds at 1100°F, this load was
then held constant for 312 hr., and then increased to 2250 pounds at
1400°F.

The primary purpose of this example is to compare the results,
obtained by the two previously discussed models. The first one is the
two-dimensional plane stress model, and the second one is the thin beam
model as derived from thin shell theory. Figure 6.5 presents results in
the form of load versus midspan deflection. The finite element model
consists of five simple plane stress elements (dashed line in Fig. 6.5) or
five sophisticated beam elements (full line in Fig. 6.5).

It can be seen (Fig. 6.5) that the results agree quite well up to the
312-hour hold period (points 3,4). During the hold period, the material
hardens and only the beam model can represent this behavior after the load
is further increased.

The last example presents an analysis of a circular arch. The
geometry of the shallow circular arch is shown on Fig. 6.6. The material
is once again the 304 stainless steel. The arch is fixed at both ends and
carries a concentrated load at the center. The elasto-viscoplastic
" analysis of this arch is performed with the aid of a ten curved beam elment

model and with the inertia terms taken into account. The load P is assﬁmed
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to be applied In a quasi-static mannef at t = 0. The results of this
analysis are shown on Fig. 6.6, as the time~history of the midspan
displacement. The response of the arch starts with the instantaneous
elastic deformation at t = 0, followed by slow deformation up to point B,
which can be considered as a limit point for the given value of the load P,
Beyond‘point B, the displacements increase rapidly towards point C. This

may suggest the existence of critical time for the prescribed load.
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7. FUTURE RESEARCH

As a consequence of these formulations, computational methods may be
constructed. The incremental differential theorems lead to various finite
difference methods. However, an integral theorem like the principle of the
rate of virtual power calls for implementation by a finite element method.
The discretization of the shell~like structure into finite elements and
their systematic insertion into the integral theorems may yield a system of
nodal motion differential equations. Numerous such applications are likely
to be derived where large thermomechanical loads are anticipated.

To develop geometrically nonlinear, doubly curved finite shell
elements the basic equations of nonlinear shell theories have to be
transferred into the finite element model. As these equations in general
are written in tensor notation their implementation into the finite element
matrix formulation requires considerable effort. The next effort will
concentrate how to derive the nonlinear element matrices directly from the
incrementally formulated nonlinear shell equations using a tensor-oriented
procedure. This enables the numerical realization of all structural
responses, e.g. the calculation of pre=- and post-buckling branches in
snap-through analysis and especially in bifurcation analysis, including the
detection of critical points and the consideration of geometric
imperfections., To avoid loss of accuracy care will be taken for a
realistic computation of the geometric properties as well as of the exuc?al
_loads. Finally, the developed family of shell elements will be presented

and its efficiency will be demonstrated by some applications.
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